7,542 research outputs found

    THE CASE FOR AND COMPONENTS OF A PROBABILISTIC AGRICULTURAL OUTLOOK PROGRAM

    Get PDF
    An operational program to develop and disseminate probabilistic outlook information for agricultural commodities would allow decision makers to better comprehend the degree of uncertainty associated with future prices. While there are psychological limitations to the estimation or probabilities, this is a skill that can be taught and developed, particularly among experienced forecasters such as outlook specialists. Techniques are available for eliciting probabilities, and weather forecasting experience demonstrates that experts can quantify probabilities in a reliable manner. The components of a program to develop and disseminate outlook probabilities should include a survey of user needs, training programs for participating outlook specialists, and user educational programs. Further research is needed to develop elicitation techniques, and to evaluate costs and benefits.Teaching/Communication/Extension/Profession,

    Evaluation of elicitation methods to quantify Bayes linear models

    Get PDF
    The Bayes linear methodology allows decision makers to express their subjective beliefs and adjust these beliefs as observations are made. It is similar in spirit to probabilistic Bayesian approaches, but differs as it uses expectation as its primitive. While substantial work has been carried out in Bayes linear analysis, both in terms of theory development and application, there is little published material on the elicitation of structured expert judgement to quantify models. This paper investigates different methods that could be used by analysts when creating an elicitation process. The theoretical underpinnings of the elicitation methods developed are explored and an evaluation of their use is presented. This work was motivated by, and is a precursor to, an industrial application of Bayes linear modelling of the reliability of defence systems. An illustrative example demonstrates how the methods can be used in practice

    Elicitation of structured engineering judgement to inform a focussed FMEA

    Get PDF
    The practical use of Failure Mode and Effects Analysis (FMEA) has been criticised because it is often implemented too late and in a manner that does not allow information to be fed-back to inform the product design. Lessons learnt from the use of elicitation methods to gather structured expert judgement about engineering concerns for a new product design has led to an enhancement of the approach for implementing design and process FMEA. We refer to this variant as a focussed FMEA since the goal is to enable relevant engineers to contribute to the analysis and to act upon the outcomes in such a way that all activities focus upon the design needs. The paper begins with a review of the proposed process to identify and quantify engineering concerns. The pros and cons of using elicitation methods, originally designed to support construction of a Bayesian prior, to inform a focussed FMEA are analysed and a comparison of the proposed process in relation to the existing standards is made. An industrial example is presented to illustrate customisation of the process and discuss the impact on the design process

    Modelling the reliability of search operations within the UK through Bayesian belief networks

    Get PDF
    This paper uses a Bayesian belief networks (BBN) methodology to assess the reliability of search and rescue (SAR) operations within the UK coastguard (maritime rescue) coordination centers. This is an extension of earlier work, which investigated the rationale of the government's decision to close a number of coordination centers. The previous study made use of secondary data sources and employed a binary logistic regression methodology to support the analysis. This study focused on the collection of primary data through a structured elicitation process, which resulted in the construction of a BBN. The main findings of the study are that approaches such as logistic regression are complementary to BBN's. The former provided a more objective assessment of associations between variables but was restricted in the level of detail that could be explicitly expressed within the model due to lack of available data. The latter method provided a much more detailed model but the validity of the numeric assessments was more questionable. Each method can be used to inform and defend the development of the other. The paper describes in detail the elicitation process employed to construct the BBN and reflects on the potential for bias

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Methods to elicit probability distributions from experts: a systematic review of reported practice in health technology assessment

    Get PDF
    The final publication is available at Springer via the DOI in this record.BACKGROUND: Elicitation is a technique that can be used to obtain probability distribution from experts about unknown quantities. We conducted a methodology review of reports where probability distributions had been elicited from experts to be used in model-based health technology assessments. METHODS: Databases including MEDLINE, EMBASE and the CRD database were searched from inception to April 2013. Reference lists were checked and citation mapping was also used. Studies describing their approach to the elicitation of probability distributions were included. Data was abstracted on pre-defined aspects of the elicitation technique. Reports were critically appraised on their consideration of the validity, reliability and feasibility of the elicitation exercise. RESULTS: Fourteen articles were included. Across these studies, the most marked features were heterogeneity in elicitation approach and failure to report key aspects of the elicitation method. The most frequently used approaches to elicitation were the histogram technique and the bisection method. Only three papers explicitly considered the validity, reliability and feasibility of the elicitation exercises. CONCLUSION: Judged by the studies identified in the review, reports of expert elicitation are insufficient in detail and this impacts on the perceived usability of expert-elicited probability distributions. In this context, the wider credibility of elicitation will only be improved by better reporting and greater standardisation of approach. Until then, the advantage of eliciting probability distributions from experts may be lost.NIH
    corecore