1,601 research outputs found

    Experiences Teaching an FPGA-based Embedded Systems Class

    Get PDF
    I describe a two-year-old embedded systems design course I teach at Columbia University. In it, the students learn low-level C programming and VHDL coding to design and implement a project of their own choosing. The students implement their projects using Xilinx FPGAs and tools running on Linux workstations. The main challenges the students face are understanding and complying with complex and often poorly-documented interfaces and protocols, personal time management, and teamwork. While all real-world challenges, this class is often the first time the students encounter them, which makes the class quite challenging, but very practical. In this paper, I describe the structure of the class, the configuration of our teaching laboratory, some of the more successful projects, and give suggestions to instructors wishing to implement the class elsewhere

    Constructivist Multi-Access Lab Approach in Teaching FPGA Systems Design with LabVIEW

    Get PDF
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using ‘G’ Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist closed-loop model the FPGA course has been proposed in accordance with [2- 4; 80,86,89,92]. The paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, Aleppo University

    CESEC Chair – Training Embedded System Architects for the Critical Systems Domain

    Get PDF
    Increasing complexity and interactions across scientific and tech- nological domains in the engineering of critical systems calls for new pedagogical approach. In this paper, we introduce the CESEC teaching chair. This chair aims at supporting new integrative ap- proach for the initial training of engineer and master curriculum to three engineering school in Toulouse: ISAE, INSA Toulouse and INP ENSEEIHT. It is supported by the EADS Corporate Foundation. In this paper, we highlight the rationale for this chair: need for sys- tem architect with strong foundations on technical domains appli- cable to the aerospace industry. We then introduce the ideal profile for this architect and the various pedagogical approaches imple- mented to reach this objective

    Emulator of a boost converter for educational purposes

    Get PDF
    Project-based learning (PBL) is proposed for the development of a Hardware-in-the-Loop (HIL) platform and the design of its digital controller for an undergraduate course on Digital Electronic Systems. The objective for students is the design of a digitally controlled HIL Boost converter, a digital pulse-width modulator (DPWM) and a current mode controller, implemented in field-programmable gate array (FPGA) devices. To this end, the di erent parts of the project are developed and evaluated, maximizing the use of FPGA resources in the design of the HIL and DPWM blocks, and applying design techniques that minimize the use of the digital resources used in the design of the controller. Students are equipped with a new individualized educational experience, allowing them to test their technical competence and knowledge in an environment close to the reality of the industry

    HELP – Home Electronics Laboratory Platform –Development And Evaluation

    Get PDF
    In response to the COVID pandemic, many of our undergraduate students were supplied with custom development kits to undertake their electronic laboratory activities at home. Following our return to on-campus teaching, we plan to combine on-campus laboratory sessions with at-home experiments taking advantage of both on-campus and at-home experimental work while avoiding some of the limitations experienced during remote teaching. The goal is to embed active learning as a key part of a long-term strategy to enable students to better manage their learning and to maximise the analytical engagement with lecturers in a hybrid blend of on-campus and remote activities. In this paper, we report on three generations of the at-home laboratory kit developed by the author\u27s institute and partners in the Erasmus+ project “Home Electronics Laboratory Platform (HELP)”. The HELP kit comprises a portable signal generator and measurement instrument and a custom electronic board, which includes several functional blocks alongside the usual breadboard for assembling circuits with discrete components. The motivation for the design of each generation is introduced and the desired functionality and its implementation are described. The impact and user experience with the kits have been assessed through student surveys and staff focus groups in the HELP consortium partners. The main themes associated with take-home electronics laboratories have also been explored in a workshop with HELP partners and contributors from other universities across Europe and the USA. This work is summarised and future potential technical and pedagogical developments are outlined
    corecore