1,090 research outputs found

    Experiences in modelling feature interactions with Coloured Petri Nets

    Get PDF
    A modern mobile phone supports many features: voice and data calls, text messaging, personal information management like phonebooks and calendars, WAP browsing, games, alarm clock, etc. All these features are packaged into a handset with a small display and a special purpose keypad. The limited user interface and the seamless intertwining of logically separate features cause many interactions between the software components in the UI of mobile phones. In this paper, we present an overview of our approach to modelling feature interactions in Nokia's mobile phones with explicit behavioral models of features. We use Coloured Petri Nets as the modeling language and the tool Design/CPN that provides a graphical, interactive user interface for constructing and simulating Coloured Petri Nets. We describe at a general level how we have created a graphical user interface for controlling and observing the simulations of models through an on-screen mock-up of a mobile phone. Then, we discuss the concrete results we have achieved by using our approach

    The Symmetry Method for Coloured Petri Nets

    Get PDF
    This booklet is the author's PhD-dissertation

    Analysis of Autonomic Service Oriented Architecture

    Full text link
    — Service-Oriented Architecture (SOA) enables composition of large and complex computational units out of the available atomic services. However, implementation of SOA, for its dynamic nature, could bring about challenges in terms of service discovery, service interaction, and service composition. SOA may often need to dynamically re-configure and re-organize its topologies of interactions between the web services because of some unpredictable events, such as crashes or network problems, which will cause service unavailability. Complexity and dynamism of the current and future global network systems require service architecture that is capable of autonomously changing its structure and functionality to meet dynamic changes in the requirements and environment with little human intervention. In this paper, formal models of a proposed autonomic SOA framework are developed and analyzed using Petri Net. The results showed that SOA can be improved to cope with dynamic environment and services unavailability by incorporating case-based reasoning and autonomic computing paradigm to monitor and analyze events and service requests, then to plan and execute the appropriate actions using the knowledge stored in knowledge database. Keywords— Service Oriented Architecture, autonomic computing, case-based reasoning, formal model, Petri Ne

    ACHIEVING AUTONOMIC SERVICE ORIENTED ARCHITECTURE USING CASE BASED REASONING

    Get PDF
    Service-Oriented Architecture (SOA) enables composition of large and complex computational units out of the available atomic services. However, implementation of SOA, for its dynamic nature, could bring about challenges in terms of service discovery, service interaction, service composition, robustness, etc. In the near future, SOA will often need to dynamically re-configuring and re-organizing its topologies of interactions between the web services because of some unpredictable events, such as crashes or network problems, which will cause service unavailability. Complexity and dynamism of the current and future global network system require service architecture that is capable of autonomously changing its structure and functionality to meet dynamic changes in the requirements and environment with little human intervention. This then needs to motivate the research described throughout this thesis. In this thesis, the idea of introducing autonomy and adapting case-based reasoning into SOA in order to extend the intelligence and capability of SOA is contributed and elaborated. It is conducted by proposing architecture of an autonomic SOA framework based on case-based reasoning and the architectural considerations of autonomic computing paradigm. It is then followed by developing and analyzing formal models of the proposed architecture using Petri Net. The framework is also tested and analyzed through case studies, simulation, and prototype development. The case studies show feasibility to employing case-based reasoning and autonomic computing into SOA domain and the simulation results show believability that it would increase the intelligence, capability, usability and robustness of SOA. It was shown that SOA can be improved to cope with dynamic environment and services unavailability by incorporating case-based reasoning and autonomic computing paradigm to monitor and analyze events and service requests, then to plan and execute the appropriate actions using the knowledge stored in knowledge database

    Acta Cybernetica : Volume 15. Number 4.

    Get PDF

    An infrastructure for experience centered agile prototyping of ambient intelligence

    Get PDF
    Ubiquitous computing poses new usability challenges that cut across design and development. We are particularly interested in "spaces" enhanced with sensors, public displays and personal devices. How can prototypes be used to explore the user's mobility and interaction, both explicitly and implicitly, to access services within these environments? Because of the potential cost of development and design failure, the characteristics of such systems must be explored using early versions of the system that could disrupt if used in the target environment. Being able to evaluate these systems early in the process is crucial to their successful development. This paper reports on an effort to develop a framework for the rapid prototyping and analysis of ambient intelligence systems

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Feature interaction in composed systems. Proceedings. ECOOP 2001 Workshop #08 in association with the 15th European Conference on Object-Oriented Programming, Budapest, Hungary, June 18-22, 2001

    Get PDF
    Feature interaction is nothing new and not limited to computer science. The problem of undesirable feature interaction (feature interaction problem) has already been investigated in the telecommunication domain. Our goal is the investigation of feature interaction in componet-based systems beyond telecommunication. This Technical Report embraces all position papers accepted at the ECOOP 2001 workshop no. 08 on "Feature Interaction in Composed Systems". The workshop was held on June 18, 2001 at Budapest, Hungary

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Seventh Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 24-26, 2006

    Get PDF
    This booklet contains the proceedings of the Seventh Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 24-26, 2006. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0
    • …
    corecore