2,430 research outputs found

    Results of the Ontology Alignment Evaluation Initiative 2015

    Get PDF
    cheatham2016aInternational audienceOntology matching consists of finding correspondences between semantically related entities of two ontologies. OAEI campaigns aim at comparing ontology matching systems on precisely defined test cases. These test cases can use ontologies of different nature (from simple thesauri to expressive OWL ontologies) and use different modalities, e.g., blind evaluation, open evaluation and consensus. OAEI 2015 offered 8 tracks with 15 test cases followed by 22 participants. Since 2011, the campaign has been using a new evaluation modality which provides more automation to the evaluation. This paper is an overall presentation of the OAEI 2015 campaign

    Wikimatcher: Leveraging Wikipedia for Ontology Alignment

    Get PDF
    As the Semantic Web grows, so does the number of ontologies used to structure the data within it. Aligning these ontologies is critical to fully realizing the potential of the web. Previous work in ontology alignment has shown that even alignment systems utilizing basic string similarity metrics can produce useful matches. Researchers speculate that including semantic as well as syntactic information inherent in entity labels can further improve alignment results. This paper examines that hypothesis by exploring the utility of using Wikipedia as a source of semantic information. Various elements of Wikipedia are considered, including article content, page terms, and search snippets. The utility of each information source is analyzed and a composite system, WikiMatcher, is created based on this analysis. The performance of WikiMatcher is compared to that of a basic string-based alignment system on two established alignment benchmarks and two other real-world datasets. The extensive evaluation shows that although WikiMatcher performs similarly to that of the string metric overall, it is able to find many matches with no syntactic similarity between labels. This performance seems to be driven by Wikipedia\u27s query resolution and page redirection system, rather than by the particular information from Wikipedia that is used to compare entities

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    Automating OAEI campaigns (first report)

    Get PDF
    trojahn2010cInternational audienceThis paper reports the first effort into integrating OAEI and SEALS evaluation campaigns. The SEALS project aims at providing standardized resources (software components, data sets, etc.) for automatically executing evaluations of typical semantic web tools, including ontology matching tools. A first version of the software infrastructure is based on the use of a web service interface wrapping the functionality of a matching tool to be evaluated. In this setting, the evaluation results can visualized and manipulated immediately in a direct feedback cycle. We describe how parts of the OAEI 2010 evaluation campaign have been integrated into this software infrastructure. In particular, we discuss technical and organizational aspects related to the use of the new technology for both participants and organizers of the OAEI

    Building an effective and efficient background knowledge resource to enhance ontology matching

    Get PDF
    International audienceOntology matching is critical for data integration and interoperability. Original ontology matching approaches relied solely on the content of the ontologies to align. However, these approaches are less effective when equivalent concepts have dissimilar labels and are structured with different modeling views. To overcome this semantic heterogeneity, the community has turned to the use of external background knowledge resources. Several methods have been proposed to select ontologies, other than the ones to align, as background knowledge to enhance a given ontology-matching task. However, these methods return a set of complete ontologies, while, in most cases, only fragments of the returned ontologies are effective for discovering new mappings. In this article, we propose an approach to select and build a background knowledge resource with just the right concepts chosen from a set of ontologies, which improves efficiency without loss of effectiveness. The use of background knowledge in ontology matching is a double-edged sword: while it may increase recall (i.e., retrieve more correct mappings), it may lower precision (i.e., produce more incorrect mappings). Therefore, we propose two methods to select the most relevant mappings from the candidate ones: (1)~a selection based on a set of rules and (2)~a selection based on supervised machine learning. Our experiments, conducted on two Ontology Alignment Evaluation Initiative (OAEI) datasets, confirm the effectiveness and efficiency of our approach. Moreover, the F-measure values obtained with our approach are very competitive to those of the state-of-the-art matchers exploiting background knowledge resources
    • …
    corecore