395 research outputs found

    Towards an interoperable healthcare information infrastructure - working from the bottom up

    Get PDF
    Historically, the healthcare system has not made effective use of information technology. On the face of things, it would seem to provide a natural and richly varied domain in which to target benefit from IT solutions. But history shows that it is one of the most difficult domains in which to bring them to fruition. This paper provides an overview of the changing context and information requirements of healthcare that help to explain these characteristics.First and foremost, the disciplines and professions that healthcare encompasses have immense complexity and diversity to deal with, in structuring knowledge about what medicine and healthcare are, how they function, and what differentiates good practice and good performance. The need to maintain macro-economic stability of the health service, faced with this and many other uncertainties, means that management bottom lines predominate over choices and decisions that have to be made within everyday individual patient services. Individual practice and care, the bedrock of healthcare, is, for this and other reasons, more and more subject to professional and managerial control and regulation.One characteristic of organisations shown to be good at making effective use of IT is their capacity to devolve decisions within the organisation to where they can be best made, for the purpose of meeting their customers' needs. IT should, in this context, contribute as an enabler and not as an enforcer of good information services. The information infrastructure must work effectively, both top down and bottom up, to accommodate these countervailing pressures. This issue is explored in the context of infrastructure to support electronic health records.Because of the diverse and changing requirements of the huge healthcare sector, and the need to sustain health records over many decades, standardised systems must concentrate on doing the easier things well and as simply as possible, while accommodating immense diversity of requirements and practice. The manner in which the healthcare information infrastructure can be formulated and implemented to meet useful practical goals is explored, in the context of two case studies of research in CHIME at UCL and their user communities.Healthcare has severe problems both as a provider of information and as a purchaser of information systems. This has an impact on both its customer and its supplier relationships. Healthcare needs to become a better purchaser, more aware and realistic about what technology can and cannot do and where research is needed. Industry needs a greater awareness of the complexity of the healthcare domain, and the subtle ways in which information is part of the basic contract between healthcare professionals and patients, and the trust and understanding that must exist between them. It is an ideal domain for deeper collaboration between academic institutions and industry

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606

    The Simple Knowledge Organization System (SKOS): a situation report for the HIVE Project

    Get PDF
    HIVE (Helping Interdisciplinary Vocabularies Engineering) es un proyecto financiado por el IMLS (Institute of Museums and Library Services), e indirectamente, en Dryad, ambos proyectos en colaboración del Metadata Research Center y el National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina. Con el desarrollo de HIVE se pretende resolver esta problemática mediante una propuesta de generación automática de metadatos que permita la integración dinámica de vocabularios controlados específicos. Para asistir la integración de vocabularios se seleccionó SKOS (Simple Knowledge Organisation System), un estándar del World Wide Web Consortium (W3C) para la representación de sistemas de organización del conocimiento o vocabularios, como tesauros, esquemas de clasificación, sistemas de encabezamiento de materias y taxonomías, en el marco de la Web Semántica.El presente informe realiza un análisis exhaustivo de la situación en cuanto a la aplicación de SKOS. El estudio incluye una detallada revisión de literatura científica y recursos web sobre el modelo, una selección de los proyectos, iniciativas, herramientas, grupos de investigación claves y cualquier otro tipo de información que pudiera ser de relevancia para el logro de los objetivos del proyecto HIVE. Asimismo, se analiza la importancia de SKOS para el logro de la interoperabilidad semántica y se elaboran un conjunto de recomendaciones para los miembros del proyecto HIVE

    Telemedicine Scenario for Elderly People with Comorbidity

    Get PDF
    Progressive population aging is associated with negative social and economic impacts mainly due to its associated comorbidity rather than to aging per se. In this regard, information and communication technology resources may provide useful tools to assist the population with comorbidities through the use of telemedicine systems. However, despite their potential, such systems have not yet been effectively implemented due to a number of different reasons: absence of a clear business plan, poor acknowledgement of their clinical usefulness, and ethical and legal issues, among others. An analysis of current scenario from the point of view of the different actors (patients, health care providers, and health care systems) aimed at identifying the needs to be covered by telemedicine systems that could contribute to overcoming such problems. The present chapter is intended to offer such an analysisPostprint (author’s final draft

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    ECSCW 2013 Adjunct Proceedings The 13th European Conference on Computer Supported Cooperative Work 21 - 25. September 2013, Paphos, Cyprus

    Get PDF
    This volume presents the adjunct proceedings of ECSCW 2013.While the proceedings published by Springer Verlag contains the core of the technical program, namely the full papers, the adjunct proceedings includes contributions on work in progress, workshops and master classes, demos and videos, the doctoral colloquium, and keynotes, thus indicating what our field may become in the future
    corecore