6,740 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Leveraging Semantic Web Technologies for Managing Resources in a Multi-Domain Infrastructure-as-a-Service Environment

    Full text link
    This paper reports on experience with using semantically-enabled network resource models to construct an operational multi-domain networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI, recently funded through NSF's GENI project. A defining property of NIaaS is the deep integration of network provisioning functions alongside the more common storage and computation provisioning functions. Resource provider topologies and user requests can be described using network resource models with common base classes for fundamental cyber-resources (links, nodes, interfaces) specialized via virtualization and adaptations between networking layers to specific technologies. This problem space gives rise to a number of application areas where semantic web technologies become highly useful - common information models and resource class hierarchies simplify resource descriptions from multiple providers, pathfinding and topology embedding algorithms rely on query abstractions as building blocks. The paper describes how the semantic resource description models enable ExoGENI to autonomously instantiate on-demand virtual topologies of virtual machines provisioned from cloud providers and are linked by on-demand virtual connections acquired from multiple autonomous network providers to serve a variety of applications ranging from distributed system experiments to high-performance computing

    Application for managing container-based software development environments

    Get PDF
    Abstract. Virtualizing the software development process can enhance efficiency through unified, remotely managed environments. Docker containers, a popular technology in software development, are widely used for application testing and deployment. This thesis examines the use of containers as cloud-based development environments. This study explores the history and implementation of container-based virtualization before presenting containers as a novel cloud-based software development environment. Virtual containers, like virtual machines, have been extensively used in software development for code testing but not as development environments. Containers are also prevalent in the final stages of software production, specifically in the distribution and deployment of completed applications. In the practical part of the thesis, an application is implemented to improve the usability of a container-based development environment, addressing challenges in adopting new work environments. The work was conducted for a private company, and multiple experts provided input. The management application enhanced the container-based development environment’s efficiency by improving user rights management, virtual container management, and user interface. Additionally, the new management tools reduced training time for new employees by 50%, facilitating their integration into the organization. Container-based development environments with efficient management tools provide a secure, efficient, and unified platform for large-scale software development. Virtual containers also hold potential for future improvements in energy-saving strategies and organizational work method harmonization and integration.Sovellus konttipohjaisten ohjelmistonkehitysympäristöjen hallintaan. Tiivistelmä. Ohjelmistokehitysprosessin virtualisointi voi parantaa tehokkuutta yhtenäisten, etähallittujen ympäristöjen avulla. Ohjelmistonkehityksessä suosittu ohjelmistonkehitysteknologia, Docker-kontteja käytetään laajalti sovellusten testaamisessa ja käyttöönotossa. Tässä opinnäytetyössä tarkastellaan konttien käyttöä pilvipohjaisina kehitysympäristöinä. Tämä tutkimus tutkii konttipohjaisen virtualisoinnin historiaa ja toteutusta, jonka jälkeen esitellään konttien käyttöä uudenlaisena pilvipohjaisena ohjelmistokehitysympäristönä. Virtuaalisia kontteja, kuten virtuaalikoneita, on käytetty laajasti ohjelmistokehityksessä kooditestauksessa, mutta ei kehitysympäristöinä. Kontit ovat myös yleisiä ohjelmistotuotannon loppuvaiheissa, erityisesti valmiiden sovellusten jakelussa ja käyttöönotossa. Opinnäytetyön käytännön osassa toteutetaan konttipohjaisen kehitysympäristön käytettävyyttä parantava sovellus, joka vastaa uusien työympäristöjen käyttöönoton haasteisiin. Työ suoritettiin yksityiselle yritykselle, ja sen suunnitteluun osallistui useita asiantuntijoita. Hallintasovellus lisäsi konttipohjaisen kehitysympäristön tehokkuutta parantamalla käyttäjäoikeuksien hallintaa, virtuaalisen kontin hallintaa ja käyttöliittymää. Lisäksi uudet hallintatyökalut lyhensivät uusien työntekijöiden koulutusaikaa 50%, mikä helpotti heidän integroitumistaan organisaatioon. Säiliöpohjaiset kehitysympäristöt varustettuina tehokkailla hallintatyökaluilla tarjoavat turvallisen, tehokkaan ja yhtenäisen alustan laajamittaiseen ohjelmistokehitykseen. Virtuaalisissa konteissa on myös potentiaalia tulevaisuuden parannuksiin energiansäästöstrategioissa ja organisaation työmenetelmien harmonisoinnissa ja integroinnissa

    Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks

    Get PDF
    The number of both service providers operating in the cloud market and customers consuming cloud-based services is constantly increasing, proving that the cloud computing paradigm has successfully delivered its potential. Nevertheless, the unceasing growth of the cloud market is posing hard challenges on its participants. On the provider side, the capability of orchestrating resources in order to maximise profits without failing customers’ expectations is a matter of concern. On the customer side, the efficient resource selection from a plethora of similar services advertised by a multitude of providers is an open question. In such a multi-cloud landscape, several research initiatives advocate the employment of software frameworks (namely, cloud resource orchestration frameworks - CROFs) capable of orchestrating the heterogeneous resources offered by a multitude of cloud providers in a way that best suits the customer’s need. The objective of this paper is to provide the reader with a systematic review and comparison of the most relevant CROFs found in the literature, as well as to highlight the multi-cloud computing open issues that need to be addressed by the research community in the near future

    Ecosystem synergies, change and orchestration

    Get PDF
    This thesis investigates ecosystem synergies, change, and orchestration. The research topics are motivated by my curiosity, a fragmented research landscape, theoretical gaps, and new phenomena that challenge extant theories. To address these motivators, I conduct literature reviews to organise existing studies and identify their limited assumptions in light of new phenomena. Empirically, I adopt a case study method with abductive reasoning for a longitudinal analysis of the Alibaba ecosystem from 1999 to 2020. My findings provide an integrated and updated conceptualisation of ecosystem synergies that comprises three distinctive but interrelated components: 1) stack and integrate generic resources for efficiency and optimisation, 2) empower generative changes for variety and evolvability, and 3) govern tensions for sustainable growth. Theoretically grounded and empirically refined, this new conceptualisation helps us better understand the unique synergies of ecosystems that differ from those of alternative collective organisations and explain the forces that drive voluntary participation for value co-creation. Regarding ecosystem change, I find a duality relationship between intentionality and emergence and develop a phasic model of ecosystem sustainable growth with internal and external drivers. This new understanding challenges and extends prior discussions on their dominant dualism view, focus on partial drivers, and taken-for-granted lifecycle model. I propose that ecosystem orchestration involves systematic coordination of technological, adoption, internal, and institutional activities and is driven by long-term visions and adjusted by re-visioning. My analysis reveals internal orchestration's important role (re-envisioning, piloting, and organisation architectural reconfiguring), the synergy and system principles in designing adoption activities, and the expanding arena of institutional activities. Finally, building on the above findings, I reconceptualise ecosystems and ecosystem sustainable growth to highlight multi-stakeholder value creation, inclusivity, long-term orientation and interpretative approach. The thesis ends with discussing the implications for practice, policy, and future research.Open Acces
    corecore