6,575 research outputs found

    National Forest Biomass Mapping Using the Two-Level Model

    Get PDF
    This article uses the two-level model (TLM) to predict above-ground biomass (AGB) from TanDEM-X synthetic aperture radar (SAR) data for Sweden. The SAR data were acquired between October 2015 and January 2016 and consisted of 420 scenes. The AGB was estimated from forest height and canopy density estimates obtained from TLM inversion with a power law model. The model parameters were estimated separately for each satellite scene. The prediction accuracy at stand-level was evaluated using field inventoried references from entire Sweden 2017, provided by a forestry company. AGB estimation performance varied throughout the country, with smaller errors in the north and larger in the south, but when the errors were expressed in relative terms, this pattern vanished. The error in terms of root mean square error (RMSE) was 45.6 and 27.2 t/ha at the plot- and stand-level, respectively, and the corresponding biases were -8.80 and 11.2 t/ha. When the random errors related to using sampled field references were removed, the RMSE decreased about 24% to 20.7 t/ha at the stand-level. Overall, the RMSE was of similar order to that obtained in a previous study (27-30 t/ha), where one linear regression model was used for all scenes in Sweden. It is concluded that, using the power law model with parameters estimated for each scene, the scene-wise variations decreased

    Estimation of change in forest variables using synthetic aperture radar

    Get PDF
    Large scale mapping of changes in forest variables is needed for both environmental monitoring, planning of climate actions and sustainable forest management. Remote sensing can be used in conjunction with field data to produce wall-to-wall estimates that are practically impossible to produce using traditional field surveys. Synthetic aperture radar (SAR) can observe the forest independent of sunlight, clouds, snow, or rain, providing reliable high frequency coverage. Its wavelength determines the interaction with the forest, where longer wavelengths interact with larger structures of the trees, and shorter wavelengths interact mainly with the top part of the canopy, meaning that it can be chosen to fit specific applications. This thesis contains five studies conducted on the Remningstorp test site in southern Sweden. Studies I – III predicted above ground biomass (AGB) change using long wavelength polarimetric P- (in I) and L-band (in I – III) SAR data. The differences between the bands were small in terms of prediction quality, and the HV polarization, just as for AGB state prediction, was the polarization channel most correlated with AGB change. A moisture correction for L-band data was proposed and evaluated, and it was found that certain polarimetric measures were better for predicting AGB change than all of the polarization channels together. Study IV assessed the detectability of silvicultural treatments in short wavelength TanDEM-X interferometric phase heights. In line with earlier studies, only clear cuts were unambiguously distinguishable. Study V predicted site index and stand age by fitting height development curves to time series of TanDEM-X data. Site index and age were unbiasedly predicted for untreated plots, and the RMSE would likely decrease with longer time series. When stand age was known, SI was predicted with an RMSE comparable to that of the field based measurements. In conclusion, this thesis underscores SAR data's potential for generalizable methods for estimation of forest variable changes

    Comparing TanDEM-X InSAR Forest Stand Volume Prediction Models Trained Using Field and ALS Data

    Get PDF
    Remote sensing (RS) techniques have been used for mapping forest variables, such as stem volume (important for forest management activities associated with timber production), over large areas which can be updated more frequently than with field inventory (FI) data. In this study, wall-to-wall TanDEM-X synthetic aperture radar images were used as auxiliary RS data for model-based prediction of stand-level volumes for two models, trained using volumes computed from FI (A) and airborne laser scanning estimations (B), respectively. The models were validated with harvester data available for independent stands. It was observed that the performance of model B was slightly better compared to model A based on adjusted R 2 and root mean squared error values. Therefore, it can be concluded that a completely RS based approach for prediction and mapping of stand volumes would be as promising as a method based on FI data along with being cost- and labour-efficient

    Prediction of Site Index and Age Using Time Series of TanDEM-X Phase Heights

    Get PDF
    Site index and stand age are important variables in forestry. Site index describes the growing potential at a given location, expressed as the height that trees can attain at a given age under favorable growing conditions. It is traditionally used to classify forests in terms of future timber yield potential. Stand age is used for the planning of management activities such as thinning and harvest. SI has previously been predicted using remote sensing, but usually relying on either very short time series or repeated ALS acquisitions. In this study, site index and forest stand age were predicted from time series of interferometric TanDEM-X data spanning seven growth seasons in a hemi-boreal forest in Remningstorp, a test site located in southern Sweden. The goal of the study was to see how satellite-based radar time series could be used to estimate site index and stand age. Compared to previous studies, we used a longer time series and applied a penetration depth correction to the phase heights, thereby avoiding the need for calibration using ancillary field or ALS data. The time series consisted of 30 TanDEM-X strip map scenes acquired between 2011 and 2018. Established height development curves were fitted to the time series of TanDEM-X-based top heights. This enabled simultaneous estimation of both age and site index on 91 field plots with a 10 m radius. The RMSE of predicted SI and age were 6.9 m and 38 years for untreated plots when both SI and age were predicted. When predicting SI and the age was known, the RMSE of the predicted SI was 4.0 m. No significant prediction bias was observed for untreated plots, while underestimation of SI and overestimation of age increased with the intensity of treatment

    On the Sensitivity of TanDEM-X-Observations to Boreal Forest Structure

    Get PDF
    The structure of forests is important to observe for understanding coupling to global dynamics of ecosystems, biodiversity, and management aspects. In this paper, the sensitivity of X-band to boreal forest stem volume and to vertical and horizontal structure in the form of forest height and horizontal vegetation density is studied using TanDEM-X satellite observations from two study sites in Sweden: Remningstorp and Krycklan. The forest was analyzed with the Interferometric Water Cloud Model (IWCM), without the use of local data for model training, and compared with measurements by Airborne Lidar Scanning (ALS). On one hand, a large number of stands were studied, and in addition, plots with different types of changes between 2010 and 2014 were also studied. It is shown that the TanDEM-X phase height is, under certain conditions, equal to the product of the ALS quantities for height and density. Therefore, the sensitivity of phase height to relative changes in height and density is the same. For stands with a phase height >5 m we obtained an root-mean-square error, RMSE, of 8% and 10% for tree height in Remningstorp and Krycklan, respectively, and for vegetation density an RMSE of 13% for both. Furthermore, we obtained an RMSE of 17% for estimation of above ground biomass at stand level in Remningstorp and in Krycklan. The forest changes estimated with TanDEM-X/IWCM and ALS are small for all plots except clear cuts but show similar trends. Plots without forest management changes show a mean estimated height growth of 2.7% with TanDEM-X/IWCM versus 2.1% with ALS and a biomass growth of 4.3% versus 4.2% per year. The agreement between the estimates from TanDEM-X/IWCM and ALS is in general good, except for stands with low phase height

    The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space

    Get PDF
    The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission

    Modellering av "Effective Leaf Area Index" med fjÀrranalysdata

    Get PDF
    Mapping of eïżœective leaf area index (LAIe) over the Swedish boreal forest test site Krycklan (64°N19°E) was performed using ground-based ïżœeld estimates of LAIe and remote sensing data sources. The LAIe data were collected 2017 and 2018 using the LAI-2200 Plant Canopy Analyzer and its later version LAI-2200C Plant Canopy Analyzer. The remote sensing data used were airborne laser scanning (ALS) data, Interferometric Synthetic Aperture Radar (InSAR) data from TanDEM-X, and stereo matched drone images. The stereo matched drone images only covered a small subset of the Krycklan catchment, the ICOS grid area. Point cloud metrics were calculated from the ALS data and the drone data such as height percentiles, intensity percentiles, point cloud density and cover metrics. Three metrics from the TanDEM-X data were evaluated as predictors; interferometric phase height, coherence and backscatter. Estimations were done by ïżœtting regression models of LAIe and the predicting remote sensing data sources. The best ALS regression model for predicting LAIe used the canopy density gap metric, giving an R 2 adj=0.93 for catchment level estimations and R 2 adj=0.97 for the ICOS grid area. The TanDEM-X metric interferometric phase height was the single best predictor of the three InSAR metrics, predicting LAIe with a R 2 adj=0.85 at catchment level and R 2 adj=0.93 at the ICOS grid area. The drone data model included the variables canopy cover gap and the 99th height percentile, which resulted in a R 2 adj value of 0.95. The models were used to generate wall-to-wall rasters and evaluated with the leave-one-out cross validation method. It was concluded that the ALS model was best suited to predict LAIe as it was able to handle varying forestation, which both the other methods struggled with. When applied over mature and homogeneous boreal forest all models performed with similar accuracy

    Boreal Forest Properties from TanDEM-X Data Using Interferometric Water Cloud Model and Implications for a Bistatic C-Band Mission

    Get PDF
    Data from TanDEM-X in single-pass and bistatic interferometric mode together with the interferometric water cloud model (IWCM) can provide estimates of forest height and stem volume (or the related above-ground biomass) of boreal forests with high accuracy. We summarize results from two boreal test sites using two approaches, i.e., 1) based on model calibration using reference insitu stands, and 2) based on minimization of a cost function. Both approaches are based on inversion of IWCM, which models the complex coherence and backscattering coefficient of a homogeneous forest layer, which includes gaps where free-space wave propagation is assumed. A digital terrain model of the ground is also needed. IWCM is used to estimate forest height or stem volume, since the two variables are assumed to be related through an allometric equation. A relationship between the fractional area of gaps, the area-fill, and stem volume is also required to enable model inversion. The accuracy of the stem volume estimate in the two sites varies between 16% and 21% for height of ambiguity <100 m. The results clearly show the importance of using summer-time acquisitions. Based on the TanDEM-X results at X-band, C-band data from the ERS-1/ERS-2 tandem mission are revisited to investigate the potential of a future bistatic C-band interferometric mission. Out of nine ERS-1/ERS-2 pairs, only one pair was found to be acquired at summer temperatures, without precipitation and with high coherence. A simulated bistatic phase height is shown to give approximately the same sensitivity to stem volume as TanDEM-X
    • 

    corecore