9,156 research outputs found

    Towards Subject Agnostic Affective Emotion Recognition

    Full text link
    This paper focuses on affective emotion recognition, aiming to perform in the subject-agnostic paradigm based on EEG signals. However, EEG signals manifest subject instability in subject-agnostic affective Brain-computer interfaces (aBCIs), which led to the problem of distributional shift. Furthermore, this problem is alleviated by approaches such as domain generalisation and domain adaptation. Typically, methods based on domain adaptation confer comparatively better results than the domain generalisation methods but demand more computational resources given new subjects. We propose a novel framework, meta-learning based augmented domain adaptation for subject-agnostic aBCIs. Our domain adaptation approach is augmented through meta-learning, which consists of a recurrent neural network, a classifier, and a distributional shift controller based on a sum-decomposable function. Also, we present that a neural network explicating a sum-decomposable function can effectively estimate the divergence between varied domains. The network setting for augmented domain adaptation follows meta-learning and adversarial learning, where the controller promptly adapts to new domains employing the target data via a few self-adaptation steps in the test phase. Our proposed approach is shown to be effective in experiments on a public aBICs dataset and achieves similar performance to state-of-the-art domain adaptation methods while avoiding the use of additional computational resources.Comment: To Appear in MUWS workshop at the 32nd ACM International Conference on Information and Knowledge Management (CIKM) 202

    Applying digital content management to support localisation

    Get PDF
    The retrieval and presentation of digital content such as that on the World Wide Web (WWW) is a substantial area of research. While recent years have seen huge expansion in the size of web-based archives that can be searched efficiently by commercial search engines, the presentation of potentially relevant content is still limited to ranked document lists represented by simple text snippets or image keyframe surrogates. There is expanding interest in techniques to personalise the presentation of content to improve the richness and effectiveness of the user experience. One of the most significant challenges to achieving this is the increasingly multilingual nature of this data, and the need to provide suitably localised responses to users based on this content. The Digital Content Management (DCM) track of the Centre for Next Generation Localisation (CNGL) is seeking to develop technologies to support advanced personalised access and presentation of information by combining elements from the existing research areas of Adaptive Hypermedia and Information Retrieval. The combination of these technologies is intended to produce significant improvements in the way users access information. We review key features of these technologies and introduce early ideas for how these technologies can support localisation and localised content before concluding with some impressions of future directions in DCM

    Modelling and enterprises-the past, the present and the future.

    Get PDF
    Industry has been practicing model-driven development in various flavours. In general it can be said that modelling and use of models have delivered on the promises of platform independence, enhanced productivity, and delivery certainty as regards development of software-intensive systems. Globalization market forces, increased regulatory compliance, ever-increasing penetration of internet, and rapid advance of technology are some of the key drivers leading to increased business dynamics. Increased number of factors impacting the decision and interdependency amongst the key drivers is leading to increased complexity in making business decisions. Also, enterprise software systems need to commensurately change to quickly support the business decisions. The paper presents synthesis of our experience over a decade and half in developing model-driven development technology and using it to deliver several business-critical software systems worldwide

    Cross-Reality Re-Rendering: Manipulating between Digital and Physical Realities

    Full text link
    The advent of personalized reality has arrived. Rapid development in AR/MR/VR enables users to augment or diminish their perception of the physical world. Robust tooling for digital interface modification enables users to change how their software operates. As digital realities become an increasingly-impactful aspect of human lives, we investigate the design of a system that enables users to manipulate the perception of both their physical realities and digital realities. Users can inspect their view history from either reality, and generate interventions that can be interoperably rendered cross-reality in real-time. Personalized interventions can be generated with mask, text, and model hooks. Collaboration between users scales the availability of interventions. We verify our implementation against our design requirements with cognitive walkthroughs, personas, and scalability tests.Comment: updated. arXiv admin note: text overlap with arXiv:2204.0373

    GreaseVision: Rewriting the Rules of the Interface

    Get PDF
    Digital harms can manifest across any interface. Key problems in addressing these harms include the high individuality of harms and the fast-changing nature of digital systems. As a result, we still lack a systematic approach to study harms and produce interventions for end-users. We put forward GreaseVision, a new framework that enables end-users to collaboratively develop interventions against harms in software using a no-code approach and recent advances in few-shot machine learning. The contribution of the framework and tool allow individual end-users to study their usage history and create personalized interventions. Our contribution also enables researchers to study the distribution of harms and interventions at scale

    Unified Management of Applications on Heterogeneous Clouds

    Get PDF
    La diversidad con la que los proveedores cloud ofrecen sus servicios, definiendo sus propias interfaces y acuerdos de calidad y de uso, dificulta la portabilidad y la interoperabilidad entre proveedores, lo que incurre en el problema conocido como el bloqueo del vendedor. Dada la heterogeneidad que existe entre los distintos niveles de abstracción del cloud, como IaaS y PaaS, hace que desarrollar aplicaciones agnósticas que sean independientes de los proveedores y los servicios en los que se van a desplegar sea aún un desafío. Esto también limita la posibilidad de migrar los componentes de aplicaciones cloud en ejecución a nuevos proveedores. Esta falta de homogeneidad también dificulta el desarrollo de procesos para operar las aplicaciones que sean robustos ante los errores que pueden ocurrir en los distintos proveedores y niveles de abstracción. Como resultado, las aplicaciones pueden quedar ligadas a los proveedores para las que fueron diseñadas, limitando la capacidad de los desarrolladores para reaccionar ante cambios en los proveedores o en las propias aplicaciones. En esta tesis se define trans-cloud como una nueva dimensión que unifica la gestión de distintos proveedores y niveles de servicios, IaaS y PaaS, bajo una misma API y hace uso del estándar TOSCA para describir aplicaciones agnósticas y portables, teniendo procesos automatizados, por ejemplo para el despliegue. Por otro lado, haciendo uso de las topologías estructuradas de TOSCA, trans-cloud propone un algoritmo genérico para la migración de componentes de aplicaciones en ejecución. Además, trans-cloud unifica la gestión de los errores, permitiendo tener procesos robustos y agnósticos para gestionar el ciclo de vida de las aplicaciones, independientemente de los proveedores y niveles de servicio donde se estén ejecutando. Por último, se presentan los casos de uso y los resultados de los experimentos usados para validar cada una de estas propuestas

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa
    corecore