112,489 research outputs found

    An intelligent assistant for exploratory data analysis

    Get PDF
    In this paper we present an account of the main features of SNOUT, an intelligent assistant for exploratory data analysis (EDA) of social science survey data that incorporates a range of data mining techniques. EDA has much in common with existing data mining techniques: its main objective is to help an investigator reach an understanding of the important relationships ina data set rather than simply develop predictive models for selectd variables. Brief descriptions of a number of novel techniques developed for use in SNOUT are presented. These include heuristic variable level inference and classification, automatic category formation, the use of similarity trees to identify groups of related variables, interactive decision tree construction and model selection using a genetic algorithm

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Enhancing Undergraduate AI Courses through Machine Learning Projects

    Full text link
    It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects – Web User Profiling which we have used in our AI class

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Sustainable Livelihoods Enhancement and Diversification (SLED): A Manual for Practitioners

    Get PDF
    The aim of this document is to provide development practitioners with an introduction to the SLED process as well as guidance for practitioners facilitating that process. The Sustainable Livelihoods Enhancement and Diversification (SLED) approach has been developed by Integrated Marine Management Ltd (IMM) through building on the lessons of past livelihoods research projects as well as worldwide experience in livelihood improvement and participatory development practice. It aims to provide a set of guidelines for development and conservation practitioners whose task it is to assist people in enhancing and diversifying their livelihoods. Under the Coral Reefs and Livelihoods Initiative (CORALI), this approach has been field tested and further developed in very different circumstances and institutional settings, in six sites across South Asia and Indonesia. While this process of testing and refining SLED has been carried out specifically in the context of efforts to manage coastal and marine resources, it is an approach that can be applied widely wherever natural resources are facing degradation because of unsustainable human use. The SLED approach provides a framework within which diverse local contexts and the local complexities of livelihood change can be accommodated

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

    Full text link
    Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.Comment: This paper is accepted by ECML-PKDD 201
    corecore