5,284 research outputs found

    Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    Get PDF
    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models

    Orion FSW V and V and Kedalion Engineering Lab Insight

    Get PDF
    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed

    Report of the workshop on Aviation Safety/Automation Program

    Get PDF
    As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach Inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers

    Autonomous Fault-Tolerant Avionics for Small COTS Satellites: to Reality and Prototype

    Get PDF
    In this contribution we present practical experiences from realizing a prototype of the first truly fault-tolerant and autonomously operating avionics suite for miniaturized satellite down to the size of a 2U CubeSat. Our initial demonstrator setup consists of a mix of COTS parts and FPGA development boards, which we gradually expanded in scope and capabilities. After four iterations of PCB development and manufacturing, we have condensed this design to a fully integrated custom PCB-based prototype. Our fourth architecture iteration is stackable and is designed to fit on an 80×80mm PCB footprint. It is furthermore capable of operating as generic satellite subsystem node, functioning in a distributed, fault-tolerant, interconnected manner together with other subsystems. Each node is fully replaceable by two or more neighboring subsystem-nodes. In consequence, we achieve a satellite bus setup which is in spirit similar to integrated modular avionics and modern fault-tolerant avionics network architectures used in other fields. We realize this setup through a high-speed chip-to-chip network in a compact CubeSat form factor

    Systems approach to engineering education design

    Get PDF
    [Abstract]: The design and delivery of effective engineering education to diverse cohorts of adult learners is challenging. The sheer volume and diversity of published literature relating to the scholarship of teaching and learning presents a challenge to educational designers and teaching practitioners alike. A systems approach to design and development, incorporating key principles from the literature, can assist practitioners (particularly those new to teaching) in the effective design and delivery of technical courses. This paper presents a research-based educational lifecycle model to support the design of engineering education. The paper then describes a requirements-driven development methodology that has been applied successfully to the design and delivery of a number of technical courses involving different cohorts of adult learners. The application of the methodology to development of an introductory radar systems course is used as a case study throughout the paper

    Software component testing : a standard and the effectiveness of techniques

    Get PDF
    This portfolio comprises two projects linked by the theme of software component testing, which is also often referred to as module or unit testing. One project covers its standardisation, while the other considers the analysis and evaluation of the application of selected testing techniques to an existing avionics system. The evaluation is based on empirical data obtained from fault reports relating to the avionics system. The standardisation project is based on the development of the BC BSI Software Component Testing Standard and the BCS/BSI Glossary of terms used in software testing, which are both included in the portfolio. The papers included for this project consider both those issues concerned with the adopted development process and the resolution of technical matters concerning the definition of the testing techniques and their associated measures. The test effectiveness project documents a retrospective analysis of an operational avionics system to determine the relative effectiveness of several software component testing techniques. The methodology differs from that used in other test effectiveness experiments in that it considers every possible set of inputs that are required to satisfy a testing technique rather than arbitrarily chosen values from within this set. The three papers present the experimental methodology used, intermediate results from a failure analysis of the studied system, and the test effectiveness results for ten testing techniques, definitions for which were taken from the BCS BSI Software Component Testing Standard. The creation of the two standards has filled a gap in both the national and international software testing standards arenas. Their production required an in-depth knowledge of software component testing techniques, the identification and use of a development process, and the negotiation of the standardisation process at a national level. The knowledge gained during this process has been disseminated by the author in the papers included as part of this portfolio. The investigation of test effectiveness has introduced a new methodology for determining the test effectiveness of software component testing techniques by means of a retrospective analysis and so provided a new set of data that can be added to the body of empirical data on software component testing effectiveness

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power
    corecore