290 research outputs found

    Synaptic Structure and Function in the Mouse Somatosensory Cortex during Chronic Pain: In Vivo Two-Photon Imaging

    Get PDF
    Recent advances in two-photon microscopy and fluorescence labeling techniques have enabled us to directly see the structural and functional changes in neurons and glia, and even at synapses, in the brain of living animals. Long-term in vivo two-photon imaging studies have shown that some postsynaptic dendritic spines in the adult cortex are rapidly eliminated or newly generated, in response to altered sensory input or synaptic activity, resulting in experience/activity-dependent rewiring of neuronal circuits. In vivo Ca2+ imaging studies have revealed the distinct, input-specific response patterns of excitatory neurons in the brain. These updated in vivo approaches are just beginning to be used for the study of pathophysiological mechanisms of chronic diseases. In this paper, we introduce recent in vivo two-photon imaging studies demonstrating how plastic changes in synaptic structure and function of the mouse somatosensory cortex, following peripheral injury, contribute to chronic pain conditions, like neuropathic and inflammatory pain

    Molecular Mechanisms Responsible for Functional Cortical Plasticity During Development and after Focal Ischemic Brain Injury

    Get PDF
    The cerebral cortex is organized into functional representations, or maps, defined by increased activity during specific tasks. In addition, the brain exhibits robust spontaneous activity with spatiotemporal organization that defines the brain’s functional architecture (termed functional connectivity). Task-evoked representations and functional connectivity demonstrate experience-dependent plasticity, and this plasticity may be important in neurological development and disease. An important case of this is in focal ischemic injury, which results in destruction of the involved representations and disruption of functional connectivity relationships. Behavioral recovery correlates with representation remapping and functional connectivity normalization, suggesting functional organization is critical for recovery and a potentially valuable therapeutic target. However, the cellular and molecular mechanisms that drive this systems-level plasticity are unknown, making it difficult to approach therapeutic modulation of functional brain organization. Using cortical neuroimaging in mice, this dissertation explores the role of specific genes in sensory deprivation induced functional brain map plasticity during development and after focal ischemic injury. In the three contained chapters, I demonstrate the following: 1) Arc, an excitatory neuron synaptic-plasticity gene, is required for representation remapping and behavioral recovery after focal cortical ischemia. Further, perilesional sensory deprivation can direct remapping and improve behavioral recovery. 2) Early visual experience modulates functional connectivity within and outside of the visual cortex through an Arc-dependent mechanism. 3) Electrically coupled inhibitory interneuron networks limit spontaneous activity syncrhony between distant cortical regions. This work starts to define the molecular basis for plasticity in functional brain organization and may help develop approaches for therapeutic modulation of functional brain organization

    Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013.Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle.Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information

    Cell type specific connections from primary motor to primary somatosensory cortex.

    Get PDF
    Anatomical studies have shown that primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected. The pathway from primary motor cortex (M1) to primary somatosensory cortex (S1) is thought to influence activity in S1 by conveying a general modulatory signal and/or a copy of the motor command. In these studies, we investigated M1 synaptic inputs to S1 by injecting an AAV virus containing channelrhodopsin-2 and a fluorescent tag into M1. Consistent with previous results, we found labeling of M1 axons within S1 that was most robust in the deep layers and in L1. We recorded in vitro from excitatory neurons and two classes of inhibitory interneurons, fast-spiking and somatostatin-expressing inhibitory interneurons. All three cell types had a high probability of receiving direct excitatory M1 input, with both excitatory and inhibitory cells in L4 being the least likely to receive input from M1. Disynaptic inhibition was observed frequently, indicating that M1 recruits substantial inhibition within S1. A subpopulation of pyramidal neurons in layers 5 and 6 received especially strong input from M1, suggesting M1 differentially contacts classes of pyramidal neurons, such as those projecting to different sensorimotor centers at cortical and subcortical levels. We tested this hypothesis by combining optogenetic techniques to specifically label M1 synaptic inputs to S1 and retrograde tracing to identify specific populations of projection neurons in infragranular layers of S1. We determined that both the intrinsic properties and the magnitude of M1 input to an S1 pyramidal neuron is highly dependent on its projection target. Overall, our results suggest that activation of M1 evokes within S1 a general increase in excitatory and inhibitory synaptic activity that could contribute in a layer-specific manner to state-dependent changes in S1. Our results further indicate that M1 may specifically engage subcircuits within S1 in order to differentially regulate particular downstream cortical and subcortical processing centers

    Investigating the role of fast-spiking interneurons in neocortical dynamics

    Get PDF
    PhD ThesisFast-spiking interneurons are the largest interneuronal population in neocortex. It is well documented that this population is crucial in many functions of the neocortex by subserving all aspects of neural computation, like gain control, and by enabling dynamic phenomena, like the generation of high frequency oscillations. Fast-spiking interneurons, which represent mainly the parvalbumin-expressing, soma-targeting basket cells, are also implicated in pathological dynamics, like the propagation of seizures or the impaired coordination of activity in schizophrenia. In the present thesis, I investigate the role of fast-spiking interneurons in such dynamic phenomena by using computational and experimental techniques. First, I introduce a neural mass model of the neocortical microcircuit featuring divisive inhibition, a gain control mechanism, which is thought to be delivered mainly by the soma-targeting interneurons. Its dynamics were analysed at the onset of chaos and during the phenomena of entrainment and long-range synchronization. It is demonstrated that the mechanism of divisive inhibition reduces the sensitivity of the network to parameter changes and enhances the stability and exibility of oscillations. Next, in vitro electrophysiology was used to investigate the propagation of activity in the network of electrically coupled fast-spiking interneurons. Experimental evidence suggests that these interneurons and their gap junctions are involved in the propagation of seizures. Using multi-electrode array recordings and optogenetics, I investigated the possibility of such propagating activity under the conditions of raised extracellular K+ concentration which applies during seizures. Propagated activity was recorded and the involvement of gap junctions was con rmed by pharmacological manipulations. Finally, the interaction between two oscillations was investigated. Two oscillations with di erent frequencies were induced in cortical slices by directly activating the pyramidal cells using optogenetics. Their interaction suggested the possibility of a coincidence detection mechanism at the circuit level. Pharmacological manipulations were used to explore the role of the inhibitory interneurons during this phenomenon. The results, however, showed that the observed phenomenon was not a result of synaptic activity. Nevertheless, the experiments provided some insights about the excitability of the tissue through scattered light while using optogenetics. This investigation provides new insights into the role of fast-spiking interneurons in the neocortex. In particular, it is suggested that the gain control mechanism is important for the physiological oscillatory dynamics of the network and that the gap junctions between these interneurons can potentially contribute to the inhibitory restraint during a seizure.Wellcome Trust

    Restoration of Contralateral Representation in the Mouse Somatosensory Cortex after Crossing Nerve Transfer

    Get PDF
    Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer

    Le récepteur nucléaire orphelin COUP-TFI contrôle l’identité sensorielle et l'activité neuronale dans les cellules post-mitotiques du néocortex chez la souris

    Get PDF
    The neocortex is a region of the brain that processes all sensory inputs creating appropriate behavioral responses. It is subdivided into functional areas, each with a specific cytoarchitecture, gene expression pattern and connectivity profile. The organization into areas is pre-patterned by the action of areal patterning genes, and subsequently refined by sensory evoked activity. In this study, I have first investigated whether early areal patterning is committed in progenitor and/or post-mitotic cells, and then assessed whether spontaneous neuronal activity is required in establishing correct connectivity between the neocortex and the thalamus, the principal relay station of peripheral sensory inputs. With the help of a series of transgenic mice, my work showed that the function of the areal patterning gene COUP-TFI is sufficient and necessary to organize sensory identity in post-mitotic cells, and that COUP-TFI regulates intrinsic activity properties of cortical neurons, and thus proper integration of thalamic inputs into the somatosensory cortex. In particular, I found that COUP-TFI directly controls the expression of the immediate early gene Egr1, which expression levels strongly depend on neuronal activity. Both COUP-TFI and Egr1 act on the acquisition of the stellate cell morphology of layer 4 neurons, the main targets of thalamic axons and a typical trait of primary somatosensory areas. In conclusion, this work demonstrates that cortical area patterning primordially depends on a genetic program established in post-mitotic cells and that intrinsic genetic and activity properties act together to shape the organization of early circuits in the neocortex.Le néocortex est une région du cerveau qui traite toutes les entrées sensorielles et créé des réponses comportementales. Il est subdivisé en zones fonctionnelles, chacune ayant une cytoarchitecture, un motif d’expression génique et un profil de connectivité spécifiques. L'organisation en zones est pré-modelée par des gènes organisateurs, et ensuite affinée par l’activité sensorielle. Dans cette étude, j'ai étudié d'abord si ce pré-modelage est établi dans les progéniteurs et/ou les cellules post-mitotiques, et si l'activité neuronale spontanée est nécessaire pour l’établissement de la connectivité correcte entre néocortex et thalamus, station relais principale des données sensorielles. Avec l'aide d'une série de souris transgéniques, j’ai montré que la fonction du gène organisateur COUP-TFI est suffisante et nécessaire pour organiser l'identité sensorielle dans les cellules post-mitotiques, et que COUP-TFI régule l'activité intrinsèque des neurones corticaux, influençant la bonne intégration des entrées thalamiques dans le cortex somatosensoriel. J’ai montré que COUP-TFI contrôle directement l'expression du gène Egr1, qui dépend fortement de l'activité neuronale. COUP-TFI et Egr1 agissent sur l'acquisition de la morphologie des cellules étoilées dans les neurones de la couche 4, cibles principales des axones thalamiques et trait typique des zones somatosensoriels primaires. En conclusion, ce travail montre que le pré-modelage cortical dépend primordialement d’un programme génétique établi dans les cellules post-mitotiques et que l'activité intrinsèque et les propriétés génétiques agissent ensemble pour façonner l'organisation des premiers circuits dans le néocortex

    Imaging fast neural activity in the brain with Electrical Impedance Tomography

    Get PDF
    Electrical impedance tomography (EIT) is an emerging medical imaging technique that can be employed to reconstruct the internal conductivity of an object from measurements made on the boundary. One proposed application for EIT is in head imaging, including imaging of impedance changes that occur with neuronal depolarisation and the imaging of acute stroke. The work of this thesis was aimed at advancing the imaging of brain pathology and function, with particular focus on the imaging of fast neural activity. Chapter 1 is a review of other brain imaging techniques, the principles of bioimpedance and EIT, and of previous impedance recordings of fast neural activity. Chapter 2 was a comparison of reconstruction algorithms for the detection of acute stroke using EIT in a realistic head-shaped tank, which entailed assessing boundary voltage rejection methods and quantitative analysis of image quality to determine the best reconstruction algorithms for the detection of acute stroke. In chapter 3, an EIT imaging dataset of fast neural activity, previously collected in a rat model, was assessed using second-level statistical parametric mapping (SPM) and the spatio-temporal propagation of the activity assessed and compared to the neurophysiological literature, which was reviewed in chapter 1. The analysis undertaken in chapter 3 illustrated some key methodological issues, which were addressed in chapter 4: new high resolution meshes and better optimised matrix inversion were employed, a new algorithm for electrode alignment was developed, also the use of SPM was validated by applying it to control datasets and through the use of statistical non-parametric mapping. Chapters 5 and 6 detail work attempting to cross-validate the use of EIT to image fast neural activity by employing a physiological stimulus, mechanical whisker displacement, and comparing the findings to other neurophysiological techniques recorded in the same model. Chapter 5 details work to validate the model and the impedance findings in this model as compared to previously published neurophysiological results, while chapter 6 details the use of other neurophysiological techniques for cross-validation
    corecore