53 research outputs found

    Predictive Coding Strategies for Developmental Neurorobotics

    Get PDF
    In recent years, predictive coding strategies have been proposed as a possible means by which the brain might make sense of the truly overwhelming amount of sensory data available to the brain at any given moment of time. Instead of the raw data, the brain is hypothesized to guide its actions by assigning causal beliefs to the observed error between what it expects to happen and what actually happens. In this paper, we present a variety of developmental neurorobotics experiments in which minimalist prediction error-based encoding strategies are utilize to elucidate the emergence of infant-like behavior in humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto more Vygotskian ideas. More specifically, we will investigate how simple forms of infant learning, such as motor sequence generation, object permanence, and imitation learning may arise if minimizing prediction errors are used as objective functions

    On the Interactions Between Top-Down Anticipation and Bottom-Up Regression

    Get PDF
    This paper discusses the importance of anticipation and regression in modeling cognitive behavior. The meanings of these cognitive functions are explained by describing our proposed neural network model which has been implemented on a set of cognitive robotics experiments. The reviews of these experiments suggest that the essences of embodied cognition may reside in the phenomena of the break-down between the top-down anticipation and the bottom-up regression and in its recovery process

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Classification of Known and Unknown Environmental Sounds Based on Self-Organized Space Using a Recurrent Neural Network

    Get PDF
    Our goal is to develop a system to learn and classify environmental sounds for robots working in the real world. In the real world, two main restrictions pertain in learning. (i) Robots have to learn using only a small amount of data in a limited time because of hardware restrictions. (ii) The system has to adapt to unknown data since it is virtually impossible to collect samples of all environmental sounds. We used a neuro-dynamical model to build a prediction and classification system. This neuro-dynamical model can self-organize sound classes into parameters by learning samples. The sound classification space, constructed by these parameters, is structured for the sound generation dynamics and obtains clusters not only for known classes, but also unknown classes. The proposed system searches on the basis of the sound classification space for classifying. In the experiment, we evaluated the accuracy of classification for both known and unknown sound classes

    How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? Robotic experiments on imitative interaction

    Get PDF
    The current paper examines how a recurrent neural network (RNN) model using a dynamic predictive coding scheme can cope with fluctuations in temporal patterns through generalization in learning. The conjecture driving this present inquiry is that a RNN model with multiple timescales (MTRNN) learns by extracting patterns of change from observed temporal patterns, developing an internal dynamic structure such that variance in initial internal states account for modulations in corresponding observed patterns. We trained a MTRNN with low-dimensional temporal patterns, and assessed performance on an imitation task employing these patterns. Analysis reveals that imitating fluctuated patterns consists in inferring optimal internal states by error regression. The model was then tested through humanoid robotic experiments requiring imitative interaction with human subjects. Results show that spontaneous and lively interaction can be achieved as the model successfully copes with fluctuations naturally occurring in human movement patterns

    Robā€™s Robot: Current and Future Challenges for Humanoid Robots

    Get PDF
    • ā€¦
    corecore