353 research outputs found

    A Scalable Middleware Solution for Advanced Wide Area Web Services

    Get PDF
    To alleviate scalability problems in the Web, many researchers concentrate on how to incorporate advanced caching and replication techniques. Many solutions incorporate object-based techniques. In particular, Web resources are considered as distributed objects offering a well-defined interface. We argue that most proposals ignore two important aspects. First, there is little discussion on what kind of coherence should be provided. Proposing specific caching or replication solutions makes sense only if we know what coherence model they should implement. Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will never work in a wide-area system. We propose a solution in which Web resources are encapsulated in physically distributed shared objects. Each object should encapsulate not only state and operations, but also the policy by which its state is distributed, cached, replicated, migrated, etc

    Using cooperation to improve the experience of web services consumers

    Get PDF
    Web Services (WS) are one of the most promising approaches for building loosely coupled systems. However, due to the heterogeneous and dynamic nature of the WS environment, ensuring good QoS is still non-trivial. While WS tend to scale better than tightly coupled systems, they introduce a larger communication overhead and are more susceptible to server/resource latency. Traditionally this problem has been addressed by relying on negotiated Service Level Agreement to ensure the required QoS, or the development of elaborate compensation handlers to minimize the impact of undesirable latency. This research focuses on the use of cooperation between consumers and providers as an effective means of optimizing resource utilization and consumer experiences. It introduces a novel cooperative approach to implement the cooperation between consumers and providers

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Model-driven dual caching For nomadic service-oriented architecture clients

    Get PDF
    Mobile devices have evolved over the years from resource constrained devices that supported only the most basic tasks to powerful handheld computing devices. However, the most significant step in the evolution of mobile devices was the introduction of wireless connectivity which enabled them to host applications that require internet connectivity such as email, web browsers and maybe most importantly smart/rich clients. Being able to host smart clients allows the users of mobile devices to seamlessly access the Information Technology (IT) resources of their organizations. One increasingly popular way of enabling access to IT resources is by using Web Services (WS). This trend has been aided by the rapid availability of WS packages/tools, most notably the efforts of the Apache group and Integrated Development Environment (IDE) vendors. But the widespread use of WS raises questions for users of mobile devices such as laptops or PDAs; how and if they can participate in WS. Unlike their “wired” counterparts (desktop computers and servers) they rely on a wireless network that is characterized by low bandwidth and unreliable connectivity.The aim of this thesis is to enable mobile devices to host Web Services consumers. It introduces a Model-Driven Dual Caching (MDDC) approach to overcome problems arising from temporarily loss of connectivity and fluctuations in bandwidth
    • 

    corecore