7,001 research outputs found

    Experience with a middleware infrastructure for service oriented financial applications

    Get PDF
    Financial institutions, acting as financial intermediaries, need to handle numerous information sources and feed them to multiple processing, storage, and display services. This requires filtering and routing, but these feeds are usually provided in custom formats and protocols that are not the best fit for further processing. Moreover, the sheer volume of information and stringent timeliness and reliability requirements make this a substantial task. In this paper, i) we characterize one of these information feeds (the Exchange Data Publisher feed from the NYSE Euronext European Cash Markets) and ii) we present and evaluate a dissemination system for this particular feeder based on commodity hardware and open-source message-oriented middleware (Apache Qpid). This allows us to assess the feasibility of this approach and to point out the main challenges to be overcome.(undefined

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Middleware’s message : the financial technics of codata

    Get PDF
    In this paper, I will argue for the relevance of certain distinctive features of messaging systems, namely those in which data (a) can be sent and received asynchronously, (b) can be sent to multiple simultaneous recipients and (c) is received as a “potentially infinite” flow of unpredictable events. I will describe the social technology of the stock ticker, a telegraphic device introduced at the New York Stock Exchange in the 1860s, with reference to early twentieth century philosophers of synchronous experience (Bergson), simultaneous sign interpretations (Mead and Peirce), and flows of discrete events (Bachelard). Then, I will show how the ticker’s data flows developed into the 1990s-era technologies of message queues and message brokers, which distinguished themselves through their asynchronous implementation of ticker-like message feeds sent between otherwise incompatible computers and terminals. These latter systems’ characteristic “publish/subscribe” communication pattern was one in which conceptually centralized (if logically distributed) flows of messages would be “published,” and for which “subscribers” would be spontaneously notified when events of interest occurred. This paradigm—common to the so-called “message-oriented middleware” systems of the late 1990s—would re-emerge in different asynchronous distributed system contexts over the following decades, from “push media” to Twitter to the Internet of Things

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry
    • …
    corecore