3,747 research outputs found

    Engineering the Hardware/Software Interface for Robotic Platforms - A Comparison of Applied Model Checking with Prolog and Alloy

    Full text link
    Robotic platforms serve different use cases ranging from experiments for prototyping assistive applications up to embedded systems for realizing cyber-physical systems in various domains. We are using 1:10 scale miniature vehicles as a robotic platform to conduct research in the domain of self-driving cars and collaborative vehicle fleets. Thus, experiments with different sensors like e.g.~ultra-sonic, infrared, and rotary encoders need to be prepared and realized using our vehicle platform. For each setup, we need to configure the hardware/software interface board to handle all sensors and actors. Therefore, we need to find a specific configuration setting for each pin of the interface board that can handle our current hardware setup but which is also flexible enough to support further sensors or actors for future use cases. In this paper, we show how to model the domain of the configuration space for a hardware/software interface board to enable model checking for solving the tasks of finding any, all, and the best possible pin configuration. We present results from a formal experiment applying the declarative languages Alloy and Prolog to guide the process of engineering the hardware/software interface for robotic platforms on the example of a configuration complexity up to ten pins resulting in a configuration space greater than 14.5 million possibilities. Our results show that our domain model in Alloy performs better compared to Prolog to find feasible solutions for larger configurations with an average time of 0.58s. To find the best solution, our model for Prolog performs better taking only 1.38s for the largest desired configuration; however, this important use case is currently not covered by the existing tools for the hardware used as an example in this article.Comment: Presented at DSLRob 2013 (arXiv:cs/1312.5952

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Ada in AI or AI in Ada. On developing a rationale for integration

    Get PDF
    The use of Ada as an Artificial Intelligence (AI) language is gaining interest in the NASA Community, i.e., by parties who have a need to deploy Knowledge Based-Systems (KBS) compatible with the use of Ada as the software standard for the Space Station. A fair number of KBS and pseudo-KBS implementations in Ada exist today. Currently, no widely used guidelines exist to compare and evaluate these with one another. The lack of guidelines illustrates a fundamental problem inherent in trying to compare and evaluate implementations of any sort in languages that are procedural or imperative in style, such as Ada, with those in languages that are functional in style, such as Lisp. Discussed are the strengths and weakness of using Ada as an AI language and a preliminary analysis provided of factors needed for the development of criteria for the integration of these two families of languages and the environments in which they are implemented. The intent for developing such criteria is to have a logical rationale that may be used to guide the development of Ada tools and methodology to support KBS requirements, and to identify those AI technology components that may most readily and effectively be deployed in Ada

    A study of the very high order natural user language (with AI capabilities) for the NASA space station common module

    Get PDF
    The requirements are identified for a very high order natural language to be used by crew members on board the Space Station. The hardware facilities, databases, realtime processes, and software support are discussed. The operations and capabilities that will be required in both normal (routine) and abnormal (nonroutine) situations are evaluated. A structure and syntax for an interface (front-end) language to satisfy the above requirements are recommended
    • …
    corecore