7,302 research outputs found

    NASA's supercomputing experience

    Get PDF
    A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed

    Collaborative research on V/STOL control system/cockpit display tradeoffs under the NASA/MOD joint aeronautical program

    Get PDF
    Summarized here are activities that have taken place from 1979 to the present in a collaborative program between NASA Ames Research Center and the Royal Aerospace Establishment (now Defence Research Agency), Bedford on flight control system and cockpit display tradeoffs for low-speed and hover operations of future V/STOL aircraft. This program was created as Task 8A of the Joint Aeronautical Program between NASA in the United States and the Ministry of Defence (Procurement Executive) in the United Kingdom. The program was initiated based on a recognition by both parties of the strengths of the efforts of their counterparts and a desire to participate jointly in future simulation and flight experiments. In the ensuing years, teams of NASA and RAE engineers and pilots have participated in each other's simulation experiments to evaluate control and display concepts and define design requirements for research aircraft. Both organizations possess Harrier airframes that have undergone extensive modification to provide in-flight research capabilities in the subject areas. Both NASA and RAE have profited by exchanges of control/display concepts, design criteria, fabrication techniques, software development and validation, installation details, and ground and flight clearance techniques for their respective aircraft. This collaboration has permitted the two organizations to achieve jointly substantially more during the period than if they had worked independently. The two organizations are now entering the phase of flight research for the collaborative program as currently defined

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Development of a flight software testing methodology

    Get PDF
    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada

    Simulation Applications at NASA Ames Research Center

    Get PDF
    Aeronautical applications of simulation technology at Ames Research Center are described. The largest wind tunnel in the world is used to determine the flow field and aerodynamic characteristics of various aircraft, helicopter, and missile configurations. Large computers are used to obtain similar results through numerical solutions of the governing equations. Capabilities are illustrated by computer simulations of turbulence, aileron buzz, and an exhaust jet. Flight simulators are used to assess the handling qualities of advanced aircraft, particularly during takeoff and landing

    Application of special-purpose digital computers to rotorcraft real-time simulation

    Get PDF
    The use of an array processor as a computational element in rotorcraft real-time simulation is studied. A multilooping scheme was considered in which the rotor would loop over its calculations a number of time while the remainder of the model cycled once on a host computer. To prove that such a method would realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical host-array processor computing configuration. The multilooping of an expanded rotor model, which included appropriate kinematic equations, resulted in an accurate and stable simulation

    Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    Get PDF
    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures

    Highly parallel computation

    Get PDF
    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed

    Computers for real time flight simulation: A market survey

    Get PDF
    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program
    corecore