9,998 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    The determinants of value addition: a crtitical analysis of global software engineering industry in Sri Lanka

    Get PDF
    It was evident through the literature that the perceived value delivery of the global software engineering industry is low due to various facts. Therefore, this research concerns global software product companies in Sri Lanka to explore the software engineering methods and practices in increasing the value addition. The overall aim of the study is to identify the key determinants for value addition in the global software engineering industry and critically evaluate the impact of them for the software product companies to help maximise the value addition to ultimately assure the sustainability of the industry. An exploratory research approach was used initially since findings would emerge while the study unfolds. Mixed method was employed as the literature itself was inadequate to investigate the problem effectively to formulate the research framework. Twenty-three face-to-face online interviews were conducted with the subject matter experts covering all the disciplines from the targeted organisations which was combined with the literature findings as well as the outcomes of the market research outcomes conducted by both government and nongovernment institutes. Data from the interviews were analysed using NVivo 12. The findings of the existing literature were verified through the exploratory study and the outcomes were used to formulate the questionnaire for the public survey. 371 responses were considered after cleansing the total responses received for the data analysis through SPSS 21 with alpha level 0.05. Internal consistency test was done before the descriptive analysis. After assuring the reliability of the dataset, the correlation test, multiple regression test and analysis of variance (ANOVA) test were carried out to fulfil the requirements of meeting the research objectives. Five determinants for value addition were identified along with the key themes for each area. They are staffing, delivery process, use of tools, governance, and technology infrastructure. The cross-functional and self-organised teams built around the value streams, employing a properly interconnected software delivery process with the right governance in the delivery pipelines, selection of tools and providing the right infrastructure increases the value delivery. Moreover, the constraints for value addition are poor interconnection in the internal processes, rigid functional hierarchies, inaccurate selections and uses of tools, inflexible team arrangements and inadequate focus for the technology infrastructure. The findings add to the existing body of knowledge on increasing the value addition by employing effective processes, practices and tools and the impacts of inaccurate applications the same in the global software engineering industry

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%

    Educating Sub-Saharan Africa:Assessing Mobile Application Use in a Higher Learning Engineering Programme

    Get PDF
    In the institution where I teach, insufficient laboratory equipment for engineering education pushed students to learn via mobile phones or devices. Using mobile technologies to learn and practice is not the issue, but the more important question lies in finding out where and how they use mobile tools for learning. Through the lens of Kearney et al.’s (2012) pedagogical model, using authenticity, personalisation, and collaboration as constructs, this case study adopts a mixed-method approach to investigate the mobile learning activities of students and find out their experiences of what works and what does not work. Four questions are borne out of the over-arching research question, ‘How do students studying at a University in Nigeria perceive mobile learning in electrical and electronic engineering education?’ The first three questions are answered from qualitative, interview data analysed using thematic analysis. The fourth question investigates their collaborations on two mobile social networks using social network and message analysis. The study found how students’ mobile learning relates to the real-world practice of engineering and explained ways of adapting and overcoming the mobile tools’ limitations, and the nature of the collaborations that the students adopted, naturally, when they learn in mobile social networks. It found that mobile engineering learning can be possibly located in an offline mobile zone. It also demonstrates that investigating the effectiveness of mobile learning in the mobile social environment is possible by examining users’ interactions. The study shows how mobile learning personalisation that leads to impactful engineering learning can be achieved. The study shows how to manage most interface and technical challenges associated with mobile engineering learning and provides a new guide for educators on where and how mobile learning can be harnessed. And it revealed how engineering education can be successfully implemented through mobile tools

    Pocket size interactive films: Embedding the mobile devices’ features, characteristics and affordances into filmic interactive narratives.

    Get PDF
    Throughout the history of interactive film, creators have experimented with different modes of interaction to allow for the viewers’ agency. As interactive films have not yet established a standardised form, projects have continually been shaped by new technology. Over time, viewers have shifted from the cinema, to televisions, the personal computer and recently the mobile device. These devices further extend the interactive capabilities that are at the creators’ disposal. Therefore, this thesis proposes that mobile devices could facilitate new forms of interactive film that make use of these features. This study investigates the integration of the mobile devices’ characteristics, features and affordances into an interactive film project that is both viewed and interacted with on a mobile device. First and foremost, it establishes whether the mobile device can be successfully used by authors to relay interactive films. Secondly, it gives insights into design considerations for authors that aim to make use of the mobile devices’ features. Additionally, the thesis gathers insights into the use of game-engine technology for developing similar interactive film projects. The research begins with a literature review establishing the historical and academic context in regards to interactive- films, narratives, and interfaces, thereby focussing on mobile devices. Consecutively, a selection of projects is surveyed to garner insights into the current state of the art. These sections are then used to inform the practice-based part of this thesis in which the production of an interactive film project will be comprehensively documented. A concurrent think-aloud usability test, accompanied by a reflection on the outcomes and production process will conclude the research. The outcome suggests that mobile devices can act as successful vessels for interactive narratives. However, usability tests as well as reflection reveal that the thesis project cannot be strictly classified as an interactive film. Therefore, suggestions for future research as well as insights into the retention of filmic quality can be made in retrospect. Additionally, The use of game-engines for interactive film authoring proves to allow creators rapid prototyping and ease of implementation. Though their use might impact projects by over-complicating interaction paradigms more extensively used in game production.Media files notes: Project Documentation of Creations; an interactive short film for the mobile device. Media rights: CC-BY-NC-ND 4.

    Innovative Hybrid Approaches for Vehicle Routing Problems

    Get PDF
    This thesis deals with the efficient resolution of Vehicle Routing Problems (VRPs). The first chapter faces the archetype of all VRPs: the Capacitated Vehicle Routing Problem (CVRP). Despite having being introduced more than 60 years ago, it still remains an extremely challenging problem. In this chapter I design a Fast Iterated-Local-Search Localized Optimization algorithm for the CVRP, shortened to FILO. The simplicity of the CVRP definition allowed me to experiment with advanced local search acceleration and pruning techniques that have eventually became the core optimization engine of FILO. FILO experimentally shown to be extremely scalable and able to solve very large scale instances of the CVRP in a fraction of the computing time compared to existing state-of-the-art methods, still obtaining competitive solutions in terms of their quality. The second chapter deals with an extension of the CVRP called the Extended Single Truck and Trailer Vehicle Routing Problem, or simply XSTTRP. The XSTTRP models a broad class of VRPs in which a single vehicle, composed of a truck and a detachable trailer, has to serve a set of customers with accessibility constraints making some of them not reachable by using the entire vehicle. This problem moves towards VRPs including more realistic constraints and it models scenarios such as parcel deliveries in crowded city centers or rural areas, where maneuvering a large vehicle is forbidden or dangerous. The XSTTRP generalizes several well known VRPs such as the Multiple Depot VRP and the Location Routing Problem. For its solution I developed an hybrid metaheuristic which combines a fast heuristic optimization with a polishing phase based on the resolution of a limited set partitioning problem. Finally, the thesis includes a final chapter aimed at guiding the computational evaluation of new approaches to VRPs proposed by the machine learning community

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    Exploring Employees\u27 Perceptions of the Learning Organization and Their Learning Experiences in a Georgia State Government Agency – A Concurrent Mixed Methods Study

    Get PDF
    This concurrent Mixed Methods (MM) research study explored employee learning perceptions and experiences in a state of Georgia government agency. The study used the Dimension of the Learning Organization Questionnaire (DLOQ) to examine employee perceptions of a learning organization across management levels and tenure. It also used semi-structured phenomenological interviews to examine learning experiences. The two questions that framed the study were: (1) How do employees navigate learning individually, in teams, and organizationally? (2) How do employee perceptions of the learning organization compare based on tenure and management level? The concurrent mixed methods design allowed for comparison of findings from the questionnaire and the interviews. Participants were simultaneously recruited from the same state of Georgia government agency to complete the questionnaire and interview voluntarily. Three hundred and thirty-eight (338) employees responded to the questionnaire, the quantitative (QUAN) strand. Five (5) employees participated in the interviews, the qualitative (QUAL) strand. The interview data was analyzed using a hybrid/eclectic methodology of coding, theming, and analytic memos. The questionnaire data was analyzed using descriptive and non-parametric statistical tests. The findings of the study suggest that leadership influences learning critically. For this organization to continue learning and growing, it must focus on the leaderships’ impact on its employees\u27 learning in the work environment. Additionally, significant differences in employee perceptions of the learning organization were observed. These differences were between employees with 6 to 10 years and those with 16 to 20 years of tenure on Inquiry/Dialogue (Dimension 2), Organization Environment Connection (Dimension 6), and Individual Level learning (Level 1). While the findings present possible explanations for the differing perceptions, future research should examine this further

    Full stack development toward a trapped ion logical qubit

    Get PDF
    Quantum error correction is a key step toward the construction of a large-scale quantum computer, by preventing small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates can be performed. The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized through RF and microwave radiation in combination with magnetic field gradients. The project vertically integrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional small device demonstrator. This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated. The experimental organization is optimized through automation and compressed waveform data transmission. A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger scale iterations.Open Acces
    • …
    corecore