40 research outputs found

    Group implicit concurrent algorithms in nonlinear structural dynamics

    Get PDF
    During the 70's and 80's, considerable effort was devoted to developing efficient and reliable time stepping procedures for transient structural analysis. Mathematically, the equations governing this type of problems are generally stiff, i.e., they exhibit a wide spectrum in the linear range. The algorithms best suited to this type of applications are those which accurately integrate the low frequency content of the response without necessitating the resolution of the high frequency modes. This means that the algorithms must be unconditionally stable, which in turn rules out explicit integration. The most exciting possibility in the algorithms development area in recent years has been the advent of parallel computers with multiprocessing capabilities. So, this work is mainly concerned with the development of parallel algorithms in the area of structural dynamics. A primary objective is to devise unconditionally stable and accurate time stepping procedures which lend themselves to an efficient implementation in concurrent machines. Some features of the new computer architecture are summarized. A brief survey of current efforts in the area is presented. A new class of concurrent procedures, or Group Implicit algorithms is introduced and analyzed. The numerical simulation shows that GI algorithms hold considerable promise for application in coarse grain as well as medium grain parallel computers

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers

    Application of HPC in eddy current electromagnetic problem solution

    Get PDF
    As engineering problems are becoming more and more advanced, the size of an average model solved by partial differential equations is rapidly growing and, in order to keep simulation times within reasonable bounds, both faster computers and more efficient software implementations are needed. In the first part of this thesis, the full potential of simulation software has been exploited through high performance parallel computing techniques. In particular, the simulation of induction heating processes is accomplished within reasonable solution times, by implementing different parallel direct solvers for large sparse linear system, in the solution process of a commercial software. The performance of such library on shared memory systems has been remarkably improved by implementing a multithreaded version of MUMPS (MUltifrontal Massively Parallel Solver) library, which have been tested on benchmark matrices arising from typical induction heating process simulations. A new multithreading approach and a low rank approximation technique have been implemented and developed by MUMPS team in Lyon and Toulouse. In the context of a collaboration between MUMPS team and DII-University of Padova, a preliminary version of such functionalities could be tested on induction heating benchmark problems, and a substantial reduction of the computational cost and memory requirements could be achieved. In the second part of this thesis, some examples of design methodology by virtual prototyping have been described. Complex multiphysics simulations involving electromagnetic, circuital, thermal and mechanical problems have been performed by exploiting parallel solvers, as developed in the first part of this thesis. Finally, multiobjective stochastic optimization algorithms have been applied to multiphysics 3D model simulations in search of a set of improved induction heating device configurations

    Improving the performance of sparse cholesky factorization with fine grain synchronization

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 61-62).by Manish Kumar Tuteja.M.S

    Scalability of preconditioners as a strategy for parallel computation of compressible fluid flow

    Full text link

    Reducing synchronization overhead in parallel simulation

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 67-70).by Ulana Legedza.M.S
    corecore