21 research outputs found

    Dynamic Multiple Work Stealing Strategy for Flexible Load Balancing

    Get PDF
    Lazy-task creation is an efficient method of overcoming the overhead of the grain-size problem in parallel computing. Work stealing is an effective load balancing strategy for parallel computing. In this paper, we present dynamic work stealing strategies in a lazy-task creation technique for efficient fine-grain task scheduling. The basic idea is to control load balancing granularity depending on the number of task parents in a stack. The dynamic-length strategy of work stealing uses run-time information, which is information on the load of the victim, to determine the number of tasks that a thief is allowed to steal. We compare it with the bottommost first work stealing strategy used in StackThread/MP, and the fixed-length strategy of work stealing, where a thief requests to steal a fixed number of tasks, as well as other multithreaded frameworks such as Cilk and OpenMP task implementations. The experiments show that the dynamic-length strategy of work stealing performs well in irregular workloads such as in UTS benchmarks, as well as in regular workloads such as Fibonacci, Strassen\u27s matrix multiplication, FFT, and Sparse-LU factorization. The dynamic-length strategy works better than the fixed-length strategy because it is more flexible than the latter; this strategy can avoid load imbalance due to overstealing

    スケジューリング遅延に基づいたタスク並列ランタイムシステムの性能差の解析

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 豊田 正史, 東京大学教授 田浦 健次朗, 東京大学准教授 入江 英嗣, 東京大学教授 中島 研吾, 理化学研究所チームリーダ 佐藤 三久, 東京工業大学准教授 横田 理央University of Tokyo(東京大学

    Task-parallel Runtime System Optimization Using Static Compiler Analysis

    Full text link

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu

    Achieving High Performance and High Productivity in Next Generational Parallel Programming Languages

    Get PDF
    Processor design has turned toward parallelism and heterogeneity cores to achieve performance and energy efficiency. Developers find high-level languages attractive because they use abstraction to offer productivity and portability over hardware complexities. To achieve performance, some modern implementations of high-level languages use work-stealing scheduling for load balancing of dynamically created tasks. Work-stealing is a promising approach for effectively exploiting software parallelism on parallel hardware. A programmer who uses work-stealing explicitly identifies potential parallelism and the runtime then schedules work, keeping otherwise idle hardware busy while relieving overloaded hardware of its burden. However, work-stealing comes with substantial overheads. These overheads arise as a necessary side effect of the implementation and hamper parallel performance. In addition to runtime-imposed overheads, there is a substantial cognitive load associated with ensuring that parallel code is data-race free. This dissertation explores the overheads associated with achieving high performance parallelism in modern high-level languages. My thesis is that, by exploiting existing underlying mechanisms of managed runtimes; and by extending existing language design, high-level languages will be able to deliver productivity and parallel performance at the levels necessary for widespread uptake. The key contributions of my thesis are: 1) a detailed analysis of the key sources of overhead associated with a work-stealing runtime, namely sequential and dynamic overheads; 2) novel techniques to reduce these overheads that use rich features of managed runtimes such as the yieldpoint mechanism, on-stack replacement, dynamic code-patching, exception handling support, and return barriers; 3) comprehensive analysis of the resulting benefits, which demonstrate that work-stealing overheads can be significantly reduced, leading to substantial performance improvements; and 4) a small set of language extensions that achieve both high performance and high productivity with minimal programmer effort. A managed runtime forms the backbone of any modern implementation of a high-level language. Managed runtimes enjoy the benefits of a long history of research and their implementations are highly optimized. My thesis demonstrates that converging these highly optimized features together with the expressiveness of high-level languages, gives further hope for achieving high performance and high productivity on modern parallel hardwar

    Applications, tools and techniques on the road to exascale computing

    Get PDF
    This volume of the book series “Advances in Parallel Computing” contains the proceedings of ParCo2011, the 14th biennial ParCo Conference, held from 31 August to 3 September 2011, in Ghent, Belgium. In an era when physical limitations have slowed down advances in the performance of single processing units, and new scientific challenges require exascale speed, parallel processing has gained momentum as a key gateway to HPC (High Performance Computing). Historically, the ParCo conferences have focused on three main themes: Algorithms, Architectures (both hardware and software) and Applications. Nowadays, the scenery has changed from traditional multiprocessor topologies to heterogeneous manycores, incorporating standard CPUs, GPUs (Graphics Processing Units) and FPGAs (Field Programmable Gate Arrays). These platforms are, at a higher abstraction level, integrated in clusters, grids, and clouds. This is reflected in the papers presented at the conference and the contributions as included in these proceedings. An increasing number of new algorithms are optimized for heterogeneous platforms and performance tuning is targeting extreme scale computing. Heterogeneous platforms utilising the compute power and energy efficiency of GPGPUs (General Purpose GPUs) are clearly becoming mainstream HPC systems for a large number of applications in a wide spectrum of application areas. These systems excel in areas such as complex system simulation, real-time image processing and visualisation, etc. High performance computing accelerators may well become the cornerstone of exascale computing applications such as 3-D turbulent combustion flows, nuclear energy simulations, brain research, financial and geophysical modelling. The exploration of new architectures, programming tools and techniques was evidenced by the mini-symposia “Parallel Computing with FPGAs” and “Exascale Programming Models”. The need for exascale hardware and software was also stressed in the industrial session, with contributions from Cray and the European exascale software initiative. Our sincere appreciation goes to the keynote speakers who gave their perspectives on the impact of parallel computing today and the road to exascale computing tomorrow. Our heartfelt thanks go to the authors for their valuable scientific contributions and to the programme committee who reviewed the papers and provided constructive remarks. The international audience was inspired by the quality of the presentations. The attendance and interaction was high and the conference has been an agora where many fruitful ideas were exchanged and explored. We wish to express our sincere thanks to the organizers for the smooth operation of the conference. The University conference centre Het Pand offered an excellent environment for the conference as it allowed delegates to interact informally and easily. A special word of thanks is due to the management and support staff of Het Pand for their proficient and friendly support. The organizers managed to put together an extensive social programme. This included a reception at the medieval Town Hall of Ghent as well as a memorable conference dinner. These social events stimulated interaction amongst delegates and resulted in many new contacts being made. Finally we wish to thank all the many supporters who assisted in the organization and successful running of the event. Erik D'Hollander, Ghent University, Belgium Koen De Bosschere, Ghent University, Belgium Gerhard R. Joubert, TU Clausthal, Germany David Padua, University of Illinois, USA Frans Peters, Philips Research, Netherland

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores
    corecore