126,416 research outputs found

    Embodied cognition: A field guide

    Get PDF
    The nature of cognition is being re-considered. Instead of emphasizing formal operations on abstract symbols, the new approach foregrounds the fact that cognition is, rather, a situated activity, and suggests that thinking beings ought therefore be considered first and foremost as acting beings. The essay reviews recent work in Embodied Cognition, provides a concise guide to its principles, attitudes and goals, and identifies the physical grounding project as its central research focus

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    On the Role of AI in the Ongoing Paradigm Shift within the Cognitive Sciences

    Get PDF
    This paper supports the view that the ongoing shift from orthodox to embodied-embedded cognitive science has been significantly influenced by the experimental results generated by AI research. Recently, there has also been a noticeable shift toward enactivism, a paradigm which radicalizes the embodied-embedded approach by placing autonomous agency and lived subjectivity at the heart of cognitive science. Some first steps toward a clarification of the relationship of AI to this further shift are outlined. It is concluded that the success of enactivism in establishing itself as a mainstream cognitive science research program will depend less on progress made in AI research and more on the development of a phenomenological pragmatics

    Interaction and Experience in Enactive Intelligence and Humanoid Robotics

    Get PDF
    We overview how sensorimotor experience can be operationalized for interaction scenarios in which humanoid robots acquire skills and linguistic behaviours via enacting a “form-of-life”’ in interaction games (following Wittgenstein) with humans. The enactive paradigm is introduced which provides a powerful framework for the construction of complex adaptive systems, based on interaction, habit, and experience. Enactive cognitive architectures (following insights of Varela, Thompson and Rosch) that we have developed support social learning and robot ontogeny by harnessing information-theoretic methods and raw uninterpreted sensorimotor experience to scaffold the acquisition of behaviours. The success criterion here is validation by the robot engaging in ongoing human-robot interaction with naive participants who, over the course of iterated interactions, shape the robot’s behavioural and linguistic development. Engagement in such interaction exhibiting aspects of purposeful, habitual recurring structure evidences the developed capability of the humanoid to enact language and interaction games as a successful participant
    • 

    corecore