15,335 research outputs found

    Energy landscapes, lowest gaps, and susceptibility of elastic manifolds at zero temperature

    Full text link
    We study the effect of an external field on (1+1) and (2+1) dimensional elastic manifolds, at zero temperature and with random bond disorder. Due to the glassy energy landscape the configuration of a manifold changes often in abrupt, ``first order'' -type of large jumps when the field is applied. First the scaling behavior of the energy gap between the global energy minimum and the next lowest minimum of the manifold is considered, by employing exact ground state calculations and an extreme statistics argument. The scaling has a logarithmic prefactor originating from the number of the minima in the landscape, and reads ΔE1Lθ[ln(LzLζ)]1/2\Delta E_1 \sim L^\theta [\ln(L_z L^{-\zeta})]^{-1/2}, where ζ\zeta is the roughness exponent and θ\theta is the energy fluctuation exponent of the manifold, LL is the linear size of the manifold, and LzL_z is the system height. The gap scaling is extended to the case of a finite external field and yields for the susceptibility of the manifolds χtotL2D+1θ[(1ζ)ln(L)]1/2\chi_{tot} \sim L^{2D+1-\theta} [(1-\zeta)\ln(L)]^{1/2}. We also present a mean field argument for the finite size scaling of the first jump field, h1Ldθh_1 \sim L^{d-\theta}. The implications to wetting in random systems, to finite-temperature behavior and the relation to Kardar-Parisi-Zhang non-equilibrium surface growth are discussed.Comment: 20 pages, 22 figures, accepted for publication in Eur. Phys. J.

    Self-Assembly of Geometric Space from Random Graphs

    Full text link
    We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.Comment: 26 pages, 9 figures, 2 appendice

    Extremal statistics in the energetics of domain walls

    Get PDF
    We study at T=0 the minimum energy of a domain wall and its gap to the first excited state concentrating on two-dimensional random-bond Ising magnets. The average gap scales as ΔE1Lθf(Nz)\Delta E_1 \sim L^\theta f(N_z), where f(y)[lny]1/2f(y) \sim [\ln y]^{-1/2}, θ\theta is the energy fluctuation exponent, LL length scale, and NzN_z the number of energy valleys. The logarithmic scaling is due to extremal statistics, which is illustrated by mapping the problem into the Kardar-Parisi-Zhang roughening process. It follows that the susceptibility of domain walls has also a logarithmic dependence on system size.Comment: Accepted for publication in Phys. Rev.
    corecore