226,762 research outputs found

    Angular momentum spatial distribution symmetry breaking in Rb by an external magnetic field

    Get PDF
    Excited state angular momentum alignment -- orientation conversion for atoms with hyperfine structure in presence of an external magnetic field is investigated. Transversal orientation in these conditions is reported for the first time. This phenomenon occurs under Paschen Back conditions at intermediate magnetic field strength. Weak radiation from a linearly polarized diode laser is used to excite Rb atoms in a cell. The laser beam is polarized at an angle of pi/4 with respect to the external magnetic field direction. Ground state hyperfine levels of the 5S_1/2 state are resolved using laser-induced fluorescence spectroscopy under conditions for which all excited 5P_3/2 state hyperfine components are excited simultaneously. Circularly polarized fluorescence is observed to be emitted in the direction perpendicular to both to the direction of the magnetic field B and direction of the light polarization E. The obtained circularity is shown to be in quantitative agreement with theoretical predictions.Comment: Accepted for publication in Phys. Rev.

    The pressure distribution in thermally bistable turbulent flows

    Full text link
    We present a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal pressure distribution in thermally bistable flows. The simulations employ a random turbulent driving generated in Fourier space rather than star-like heating. The turbulent fluctuations are characterized by their rms Mach number M and the energy injection wavenumber, k_for. Our results are consistent with the picture that as either of these parameters is increased, the local ratio of turbulent crossing time to cooling time decreases, causing transient structures in which the effective behavior is intermediate between the thermal-equilibrium and adiabatic regimes. As a result, the effective polytropic exponent gamma_ef ranges between ~0.2 to ~1.1. The fraction of high-density zones with P>10^4 Kcm^-3 increases from roughly 0.1% at k_for=2 and M=0.5 to roughly 70% for k_for=16 and M=1.25. A preliminary comparison with the pressure measurements of Jenkins (2004) favors our case with M=0.5 and k_for=2. In all cases, the dynamic range of the pressure summed over the entire density range, typically spans 3-4 orders of magnitude. The total pressure histogram widens as the Mach number is increased, and develops near-power-law tails at high (resp.low) pressures when gamma_ef<~ 0.5 (resp. gamma_ef>~ 1), which occurs at k_for=2 (resp.k_for=16) in our simulations. The opposite side of the pressure histogram decays rapidly, in an approx. lognormal form. Our results show that turbulent advection alone can generate large pressure scatters, with power-law high-P tails for large-scale driving, and provide validation for approaches attempting to derive the shape of the pressure histogram through a change of variable from the known form of the density histogram, such as that performed by MacLow et al.(2004).Comment: to be published in Ap
    • 

    corecore