201 research outputs found

    Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression

    Full text link
    This paper presents a novel approach for approximate integration over the uncertainty of noise and signal variances in Gaussian process (GP) regression. Our efficient and straightforward approach can also be applied to integration over input dependent noise variance (heteroscedasticity) and input dependent signal variance (nonstationarity) by setting independent GP priors for the noise and signal variances. We use expectation propagation (EP) for inference and compare results to Markov chain Monte Carlo in two simulated data sets and three empirical examples. The results show that EP produces comparable results with less computational burden

    A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

    Full text link
    We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise joint kernel measures covariance along inputs and across different latent signals in a mutually-dependent fashion. A latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit classification and support for multiple observation sets are derived by Variational Bayesian inference. Results on several datasets indicate that the LCGP model can recover the correlations between latent signals while simultaneously achieving state-of-the-art performance. We highlight the latent covariances with an EEG classification dataset where latent brain processes and their couplings simultaneously emerge from the model.Comment: 17 pages, 6 figures; accepted to ACML 201

    Large-scale Heteroscedastic Regression via Gaussian Process

    Full text link
    Heteroscedastic regression considering the varying noises among observations has many applications in the fields like machine learning and statistics. Here we focus on the heteroscedastic Gaussian process (HGP) regression which integrates the latent function and the noise function together in a unified non-parametric Bayesian framework. Though showing remarkable performance, HGP suffers from the cubic time complexity, which strictly limits its application to big data. To improve the scalability, we first develop a variational sparse inference algorithm, named VSHGP, to handle large-scale datasets. Furthermore, two variants are developed to improve the scalability and capability of VSHGP. The first is stochastic VSHGP (SVSHGP) which derives a factorized evidence lower bound, thus enhancing efficient stochastic variational inference. The second is distributed VSHGP (DVSHGP) which (i) follows the Bayesian committee machine formalism to distribute computations over multiple local VSHGP experts with many inducing points; and (ii) adopts hybrid parameters for experts to guard against over-fitting and capture local variety. The superiority of DVSHGP and SVSHGP as compared to existing scalable heteroscedastic/homoscedastic GPs is then extensively verified on various datasets.Comment: 14 pages, 15 figure

    Laplace Approximation for Divisive Gaussian Processes for Nonstationary Regression

    Get PDF
    The standard Gaussian Process regression (GP) is usually formulated under stationary hypotheses: The noise power is considered constant throughout the input space and the covariance of the prior distribution is typically modeled as depending only on the difference between input samples. These assumptions can be too restrictive and unrealistic for many real-world problems. Although nonstationarity can be achieved using specific covariance functions, they require a prior knowledge of the kind of nonstationarity, not available for most applications. In this paper we propose to use the Laplace approximation to make inference in a divisive GP model to perform nonstationary regression, including heteroscedastic noise cases. The log-concavity of the likelihood ensures a unimodal posterior and makes that the Laplace approximation converges to a unique maximum. The characteristics of the likelihood also allow to obtain accurate posterior approximations when compared to the Expectation Propagation (EP) approximations and the asymptotically exact posterior provided by a Markov Chain Monte Carlo implementation with Elliptical Slice Sampling (ESS), but at a reduced computational load with respect to both, EP and ESS

    Modulating Scalable Gaussian Processes for Expressive Statistical Learning

    Full text link
    For a learning task, Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability. The vanilla GP however struggles to learn complicated distribution with the property of, e.g., heteroscedastic noise, multi-modality and non-stationarity, from massive data due to the Gaussian marginal and the cubic complexity. To this end, this article studies new scalable GP paradigms including the non-stationary heteroscedastic GP, the mixture of GPs and the latent GP, which introduce additional latent variables to modulate the outputs or inputs in order to learn richer, non-Gaussian statistical representation. We further resort to different variational inference strategies to arrive at analytical or tighter evidence lower bounds (ELBOs) of the marginal likelihood for efficient and effective model training. Extensive numerical experiments against state-of-the-art GP and neural network (NN) counterparts on various tasks verify the superiority of these scalable modulated GPs, especially the scalable latent GP, for learning diverse data distributions.Comment: 31 pages, 9 figures, 4 tables, preprint under revie
    • …
    corecore