363 research outputs found

    Selective attention and speech processing in the cortex

    Full text link
    In noisy and complex environments, human listeners must segregate the mixture of sound sources arriving at their ears and selectively attend a single source, thereby solving a computationally difficult problem called the cocktail party problem. However, the neural mechanisms underlying these computations are still largely a mystery. Oscillatory synchronization of neuronal activity between cortical areas is thought to provide a crucial role in facilitating information transmission between spatially separated populations of neurons, enabling the formation of functional networks. In this thesis, we seek to analyze and model the functional neuronal networks underlying attention to speech stimuli and find that the Frontal Eye Fields play a central 'hub' role in the auditory spatial attention network in a cocktail party experiment. We use magnetoencephalography (MEG) to measure neural signals with high temporal precision, while sampling from the whole cortex. However, several methodological issues arise when undertaking functional connectivity analysis with MEG data. Specifically, volume conduction of electrical and magnetic fields in the brain complicates interpretation of results. We compare several approaches through simulations, and analyze the trade-offs among various measures of neural phase-locking in the presence of volume conduction. We use these insights to study functional networks in a cocktail party experiment. We then construct a linear dynamical system model of neural responses to ongoing speech. Using this model, we are able to correctly predict which of two speakers is being attended by a listener. We then apply this model to data from a task where people were attending to stories with synchronous and scrambled videos of the speakers' faces to explore how the presence of visual information modifies the underlying neuronal mechanisms of speech perception. This model allows us to probe neural processes as subjects listen to long stimuli, without the need for a trial-based experimental design. We model the neural activity with latent states, and model the neural noise spectrum and functional connectivity with multivariate autoregressive dynamics, along with impulse responses for external stimulus processing. We also develop a new regularized Expectation-Maximization (EM) algorithm to fit this model to electroencephalography (EEG) data

    An fMRI investigation on empathy: physical and social pain, prosocial behavior and the role of the opioid system

    Get PDF
    The work presented in this thesis collects three fMRI studies mainly focusing on empathy, i.e. the capacity to understand and/or share the emotional state of others. Empathy is central to human sociality, as it allows us to resonate with others\u2019 positive and negative feeling, and consequently adjust our behavior. Despite recent research has shed light on many feature of empathic responses, we still ignore many other aspects: for instance, which kind of computational processes are executed by empathy \u301s neural substrates, how empathic responses vary according to the type of observed experience, which neurochemical mechanisms are at the core of empathic responses, or also what is the link between empathic responses and the tendency to behave altruistically (usually referred to as \u2018prosocial behavior\u2019). The purpose of the work presented in this thesis is providing answers to some of the open questions. In Study 1 we aimed at understanding what are the neural substrates of empathy for social pain, a kind of pain that is constantly grabbing increasingly attention among social neuroscientists, and to which extent they overlap with the ones coding for physical pain. In Study 2 we investigated brain correlates of prosocial behavior by exploring functional connectivity within brain networks of participants who exhibited either a self-benefit behavior or an altruistic one in a life-threatening situation simulated in a virtual environment. In Study 3 we used a placebo manipulation on a group of participants undergoing first- hand and vicarious painful stimulations in order to observe how the supposed enhancement of endogenous opioids release would affect their behavioral and neurophysiological responses to the painful experience. Overall, the work presented in this thesis advances the knowledge on both empathy and prosociality mechanisms and opens the way for new investigations aiming at clarifying key aspects of social behavior

    Longitudinal change in executive function is associated with impaired top-down frontolimbic regulation during reappraisal in older adults

    Get PDF
    Networks in the prefrontal cortex (PFC) that are important for executive function are also engaged in adaptive responding to negative events. These networks are particularly vulnerable to age-related structural atrophy and an associated loss of executive function, yet existing evidence suggests preserved emotion processing ability in ageing. Using longitudinally acquired data from a battery of cognitive tasks, we defined a metric for the rate of decline of executive function. With this metric, we investigated relationships between changes in executive function and emotion reappraisal ability and brain structure, in 34 older adults, using functional and structural MRI. During task-based fMRI, participants were asked to cognitively reappraise negatively valenced images. We hypothesised one of two associations with decreasing executive function over time: 1) a decreased ability to reappraise reflected in decreased PFC and increased amygdala activation, or 2) a neural compensation mechanism characterised by increased PFC activation but no differential amygdala activation. Structurally, for a decreased reappraisal ability, we predicted a decrease in grey matter in PFC and/or a decrease of white matter integrity in amygdala-PFC pathways. Neither of the two hypotheses relating to brain function were completely supported, with the findings indicating a steeper decline in executive function associated with both increased PFC and increased left amygdala activity when reappraising negative stimuli. In addition, white matter integrity of the uncinate fasciculus, a primary white matter tract connecting the amygdala and ventromedial areas of PFC, was lower in those individuals who demonstrated a greater decrease in executive function. These findings highlight the association of diminishing cognitive ability with brain structure and function linked to emotion regulation

    ์ธ์ง€ ๋…ธ์‡ ์—์„œ FDG PET๊ณผ ํœด์ง€์ƒํƒœ fMRI๋ฅผ ์ด์šฉํ•œ ๋‡Œ ์‹ ๊ฒฝ ํ™œ๋™๊ณผ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ ํŒจํ„ด์˜ ๋™์  ๋ณ€ํ™” ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ,2019. 8. ์ด์žฌ์„ฑ.Cognitive frailty is a recently defined clinical condition characterized by concurrent appearance of physical frailty and mild cognitive impairments (MCI). Literature suggests common neuropathophysiological processes underlying physical and cognitive deficits, and physical dysfunction promotes cognitive decline, eventually leading to the emergence of Alzheimers disease dementia. It remains to be discovered how neural activities and brain network reconfigurations are altered in the presence of physical frailty in MCI. In the present study, [18F]FDG PET and resting state fMRI scans were examined in 21 MCI patients without physical frailty (robust group: mean age = 74.7 ยฑ 5.8 years) and 27 MCI with physical frailty (at-risk group: mean age = 75.5 ยฑ 7.3 years). The first part of the study aimed to investigate changes in glucose metabolism and regional homogeneity in cognitive frailty. Regional cerebral hypometabolism was observed in right frontal cortex, anterior cingulate, and bilateral superior parietal cortex in at-risk group, and the metabolic changes in left superior parietal cortex were associated with poorer performances in handgrip strength and executive function. Brain regional homogeneity was reduced in bilateral caudate, right medial and lateral frontal cortex, right superior temporal cortex, and cerebellum, and was increased in right precuneus and cerebellum. Decreased regional homogeneity in bilateral caudate and right superior temporal cortex showed correlations with weaker grip strength, slower gait speed, and lower physical activity, and the regional changes were also linked to cognitive performances in language and visuospatial function. The results demonstrated that the metabolic and functional alterations in cognitive frailty resembled Alzheimer's disease related pattern. The second part of the study aimed to explore alterations in dynamic functional connectivity states and the temporal properties. Dynamic functional connectivity was measured using a sliding-window approach, and certain connectivity configurations (states) were estimated using k-means clustering method. Four distinguishing patterns of functional connectivity were found during the resting state scan time in our MCI cohorts. The most frequently occurring state (State 1) displayed mostly within-network connections, and the less occurring states (States 2, 3 and 4) displayed stronger between-network connections in both positive and negative fashions. The alterations in the temporal properties of dynamic states such as the number of transition, fractional windows, and mean dwell time of states did not reach the significance level, however, at-risk group appeared to have less reoccurrence of within-network State 1 and more reoccurrences of between-network States 2 and 3. Reduced reoccurrence and shorter dwell time of within-network State 1 were significantly correlated with weaker handgrip strength, and the abnormally reduced within-network State 1 may reflect reduced functional network segregation coupled with physical deficits. On the other hand, higher reoccurrence and longer dwell time of State 2, which was characterized by heightened default mode network within-connectivity and increased interactions between default mode network and sensorimotor networks were associated with poorer MMSE-K score. The overexpression of interactions between default mode and sensorimotor networks may interfere with network functional specializations, leading to poor cognitive function. Furthermore, the functional connectivity strengths between sensorimotor and cognitive networks and within cognitive control network were altered in at-risk individuals. The neuroimaging outcomes present that aberrant functional changes in frontal, temporal and parietal cortex may indicate advanced pathological process in the presence of physical frailty in MCI. The time-varying network reconfigurations indicating decreased functional segregation of brain networks may also serve as a potential biomarker in cognitive frailty.์ธ์ง€ ๋…ธ์‡ ๋Š” ์‹ ์ฒด์  ๋…ธ์‡ ์™€ ๊ฒฝ๋„ ์ธ์ง€ ์žฅ์• ๊ฐ€ ๋™์‹œ์— ์กด์žฌํ•˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ ์ธ ์ตœ๊ทผ ์ •์˜๋œ ์ž„์ƒ์  ์งˆํ™˜์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์— ์˜ํ•˜๋ฉด ์‹ ์ฒด์  ๋…ธ์‡ ์™€ ์ธ์ง€ ๊ธฐ๋Šฅ ์ €ํ•˜๋Š” ๊ณตํ†ต์ ์ธ ์‹ ๊ฒฝ ๋ณ‘๋ฆฌ์  ๊ธฐ์ „์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋˜ํ•œ, ์‹ ์ฒด์  ๊ธฐ๋Šฅ ์žฅ์• ๋Š” ์ธ์ง€ ๊ธฐ๋Šฅ ๊ฐ์†Œ๋ฅผ ์ด‰์ง„ํ•˜๊ณ , ๋‚˜์•„๊ฐ€ ์•Œ์ธ ํ•˜์ด๋จธ๋ณ‘ ์น˜๋งค ๋ฐœ๋ณ‘๊นŒ์ง€ ์—ฐ๊ฒฐ๋œ๋‹ค. ์‹ ์ฒด์  ๋…ธ์‡ ๋ฅผ ๋ณด์ด๋Š” ๊ฒฝ๋„ ์ธ์ง€ ์žฅ์•  ํ™˜์ž์—์„œ์˜ ์‹ ๊ฒฝ ํ™œ๋™ ๋ณ€ํ™”์™€ ๋™์  ๋‡Œ ๋„คํŠธ์›Œํฌ ์žฌ๊ตฌ์„ฑ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง๊นŒ์ง€ ๋ณด๊ณ ๋œ ๋ฐ”๊ฐ€ ์—†์œผ๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•˜์—ฌ ๋‡Œ ์˜์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ธ์ง€ ๋…ธ์‡ ์˜ ์ค‘์š”ํ•œ ๋ฐ”์ด์˜ค๋งˆ์ปค์˜ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” [18F]FDG PET๊ณผ rs-fMRI ๋‡Œ ์˜์ƒ ๊ฒ€์‚ฌ๋ฅผ ์ด 48๋ช…์˜ ๊ฒฝ๋„ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์•  ํ™˜์ž (์‹ ์ฒด์  ๋…ธ์‡ ๊ฐ€ ์—†๋Š” ๋Œ€์กฐ๊ตฐ: 21๋ช…, ํ‰๊ท  ์—ฐ๋ น = 74.7 ยฑ 5.8์„ธ; ์‹ ์ฒด์  ๋…ธ์‡ ๊ฐ€ ์žˆ๋Š” ์œ„ํ—˜๊ตฐ: 27๋ช…, ํ‰๊ท  ์—ฐ๋ น = 75.5 ยฑ 7.3์„ธ)๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฒซ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” ์œ„ํ—˜๊ตฐ์—์„œ์˜ ๋‡Œ ์˜์—ญ์˜ ํฌ๋„๋‹น ๋Œ€์‚ฌ์˜ ๋ณ€ํ™”์™€ regional homogeneity๋ฅผ ์ด์šฉํ•œ ๋‡Œ ํ™œ๋™ ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์œ„ํ—˜๊ตฐ์—์„œ๋Š” ์šฐ์ธก ์ „๋‘ํ”ผ์งˆ, ์ „๋Œ€์ƒํ”ผ์งˆ, ์–‘์ธก ์ƒ๋‘์ •์†Œ์—ฝ์—์„œ ๋‡Œ ๋Œ€์‚ฌ ๊ฐ์†Œ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๊ณ , ์ƒ๋‘์ •์†Œ์—ฝ์—์„œ์˜ ๋Œ€์‚ฌ ๋ณ€ํ™”์™€ ์•…๋ ฅ, ์ง‘ํ–‰ ๊ธฐ๋Šฅ๊ณผ ์–‘์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ๋‡Œ ์˜์—ญ์˜ regional homogeneity ๋ณ€ํ™”๋Š” ์–‘์ธก ๊ผฌ๋ฆฌํ•ต, ์šฐ์ธก ๋‚ด์ธก๊ณผ ๊ฐ€์ธก ์ „๋‘ํ”ผ์งˆ, ์šฐ์ธก ์ƒ์ธก๋‘ํ”ผ์งˆ, ์†Œ๋‡Œ์—์„œ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์˜€๊ณ , ๊ผฌ๋ฆฌํ•ต๊ณผ ์ƒ์ธก๋‘ํ”ผ์งˆ์—์„œ์˜ regional homogeneity ๊ฐ์†Œ๋Š” ์•…๋ ฅ, ๋ณดํ–‰ ์†๋„, ์‹ ์ฒด ํ™œ๋™ ๊ฐ์†Œ ์ˆ˜์น˜์™€ ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ์–ธ์–ด ๋ฐ ์‹œ๊ณต๊ฐ„ ๊ธฐ๋Šฅ์˜ ์ธ์ง€ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊ณผ ๋†’์€ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์ด๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋‘๋ฒˆ์งธ ๋ถ€๋ถ„์€ ์œ„ํ—˜๊ตฐ์—์„œ์˜ ๋‡Œ ๋„คํŠธ์›Œํฌ์˜ ๋™์  ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ๊ณผ ํŠน์ง• ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋™์  ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ ๋ถ„์„์€ sliding-window ๋ฐฉ๋ฒ•๊ณผ k-means clustering ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‡Œ ๋„คํŠธ์›Œํฌ ์—ฐ๊ฒฐ ๊ตฌ์„ฑ ์ƒํƒœ (State)๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค. ํœด์ง€๊ธฐ ์ƒํƒœ์˜ ์˜์ƒ ์ดฌ์˜ ์‹œ๊ฐ„ ๋™์•ˆ ์ด 4๊ฐœ์˜ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ ํŒจํ„ด์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๊ณ , ๊ฐ€์žฅ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” State 1์€ ์ฃผ๋กœ ๋‡Œ ๋„คํŠธ์›Œํฌ ๋‚ด๋ถ€ ์—ฐ๊ฒฐ์„ฑ์„ ๋ณด์ด๊ณ , ๋„คํŠธ์›Œํฌ ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ฑ์€ ์•ฝํ•œ ๊ฒƒ์ด ํŠน์ง•์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ ๋‹ค์Œ์œผ๋กœ ์ž์ฃผ ๋‚˜ํƒ€๋‚œ State 2, 3, 4๋Š” ๋„คํŠธ์›Œํฌ ๊ฐ„์˜ ์–‘๊ณผ ์Œ์˜ ์—ฐ๊ฒฐ์„ฑ ๋ชจ๋‘ ๊ฐ•ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. State์˜ ์ „ํ™˜ ์ˆ˜, fractional windows, mean dwell time๊ณผ ๊ฐ™์€ ์‹œ๊ฐ„์  ์†์„ฑ์˜ ๊ทธ๋ฃน ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ์œ ์˜ํ•œ ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜์ง€ ๋ชปํ–ˆ์ง€๋งŒ, ์œ„ํ—˜๊ตฐ์—์„œ State1์˜ ์žฌ๋ฐœํ˜„์ด ๊ฐ์†Œ๋˜๊ณ  State 2, State 3์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. State 1์˜ ์†์„ฑ (fractional windows, mean dwell time)์ด ์•…๋ ฅ ๋ฐ ์‹ ์ฒด ํ™œ๋™๋Ÿ‰๊ณผ ์–‘์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๊ณ , ๋ฐ˜๋ฉด์—, ๋””ํดํŠธ ๋ชจ๋“œ ๋„คํŠธ์›Œํฌ ๊ธฐ๋Šฅ ์—ฐ๊ฒฐ์„ฑ ์ฆ๊ฐ€๊ฐ€ ํŠน์ง•์ ์ด์—ˆ๋˜ State 2์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€ ๋ฐ dwell time ์ฆ๊ฐ€๋Š” ๋‚ฎ์€ MMSE-K ์ ์ˆ˜ ์ €ํ•˜์™€ ์ƒ๊ด€์ด ์žˆ๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋„คํŠธ์›Œํฌ ๋ณ€ํ™”๋Š” ๋…ธํ™”ํ˜„์ƒ์—์„œ ๊ด€์ธก๋˜๋Š” ๋„คํŠธ์›Œํฌ ๊ธฐ๋Šฅ์  ๋ถ„๋ฆฌ (functional segregation)์˜ ๊ฐ์†Œ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋˜๋ฉฐ, ์‹ ์ฒด์  ๊ธฐ๋Šฅ ์ €ํ•˜๊ฐ€ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์ด‰์ง„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์—ฌ์ง„๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์œ„ํ—˜๊ตฐ์—์„œ ๊ฐ๊ฐ์šด๋™ ๋„คํŠธ์›Œํฌ์™€ ์ธ์ง€ ๊ธฐ๋Šฅ ๋„คํŠธ์›Œํฌ ๊ฐ„์˜ ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ๊ณผ ์ธ์ง€ ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ ๋‚ด๋ถ€ ์—ฐ๊ฒฐ์„ฑ ์„ธ๊ธฐ์—๋„ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๊ฒฐ๋ก ์œผ๋กœ๋Š”, ๋‡Œ ์˜์ƒ ๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ ์ธ์ง€ ๋…ธ์‡  ์œ„ํ—˜๊ตฐ ํ™˜์ž์—์„œ ์ „๋‘์—ฝ, ์ธก๋‘์—ฝ ๊ทธ๋ฆฌ๊ณ  ๋‘์ •์—ฝ์—์„œ ๊ธฐ๋Šฅ์  ํ™œ๋™ ๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์ด๋Š” ์‹ ์ฒด์  ๋…ธ์‡ ๊ฐ€ ์กด์žฌํ•  ๊ฒฝ์šฐ ๋ณ‘๋ฆฌํ•™์  ๊ณผ์ •์ด ๊ฐ€์†ํ™”๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ๋‡Œ ๋„คํŠธ์›Œํฌ์˜ ๋™์  ๊ธฐ๋Šฅ์  ์—ฐ๊ฒฐ์„ฑ ๋ถ„์„์„ ํ†ตํ•ด ์•…๋ ฅ ๊ฐ์†Œ์™€ ํ•จ๊ป˜ ๋„คํŠธ์›Œํฌ ๊ธฐ๋Šฅ์  ๋ถ„๋ฆฌ ๊ฐ์†Œ ํ˜„์ƒ์ด ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ, ๋‡Œ ์˜์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ธ์ง€ ๋…ธ์‡ ์˜ ์ƒ์ฒด ํ‘œ์ง€์ž ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 1 1.1 Frailty and cognition 1 1.2 Purpose of the study 3 Chapter 2. Methodological Background 5 2.1 Measurement of cerebral glucose metabolism using [18F]FDG PET. 5 2.2 Measurements of brain functional activity and intrinsic network using rsfMRI 6 2.2.1 Regional homogeneity using rs-fMRI 6 2.2.2 Group independent component analysis . 7 2.3 Dynamic functional connectivity analysis 10 Chapter 3. Subjects and Methods. 13 3.1 Participants . 13 3.1.1 Criteria of participants 13 3.1.2 Neuropsychological tests 14 3.1.3 Physical frailty definition . 14 3.1.4 Acquisition of [18F]FDG PET and rs-fMR images 19 3.1.5 Statistical analysis . 19 3.2 [18F]FDG PET image analysis . 20 3.2.1 Preprocessing steps of [18F]FDG PET . 20 3.2.2 Statistical analysis . 22 3.3 Resting state functional MRI analysis 22 3.3.1 Preprocessing steps of rs-fMRI 22 3.3.2 Calculations of regional homogeneity 23 3.3.3 Statistical analysis . 23 3.4 Functional connectivity analysis using rs-fMRI. 23 3.4.1 Group independent component analysis . 23 3.4.2 Dynamic functional network connectivity analysis 24 3.4.3 Reproducibility analyses of dynamic functional connectivity states. 26 3.4.4 Graph theory-based topological analysis: network efficiency . 27 3.4.5 Statistical analysis . 28 Chapter 4. Results. 30 4.1 Demographic and clinical characteristics of robust and at-risk groups 30 4.2 Glucose metabolism using [18F]FDG PET . 32 4.2.1 Group comparison in glucose metabolism 32 4.2.2 Relationships between cerebral glucose metabolism and physical and cognitive performances. 35 4.3 Resting-state functional activity using regional homogeneity. 38 4.3.1 Group comparison in regional homogeneity. 38 4.3.2 Relationships between regional homogeneity and physical and cognitive performances 41 4.4 Dynamic functional connectivity of brain networks . 45 4.4.1 Functional connectivity networks . 45 4.4.2 Dynamic functional connectivity states. 53 4.4.3 Validation results of dynamic functional connectivity states 57 4.4.4 Temporal properties of dynamic functional connectivity states . 62 4.4.5 Relationships between dynamic functional connectivity measures and physical and cognitive performances 66 4.4.6 Functional connectivity strengths in states . 70 4.4.7 Dynamic changes of global and local network efficiency 72 Chapter 5. Discussion 75 5.1 Metabolic and functional abnormalities in cognitive frailty 75 5.2 Alterations of dynamic functional connectivity states in cognitive frailty. 79 5.3 Conclusion and limitations of the study . 84 References . 88 ๊ตญ๋ฌธ ์ดˆ๋ก. 102Docto

    Neurophysiological correlates underlying social behavioural adjustment of conformity

    Get PDF
    [eng] Conformity is the act of changing oneโ€™s behaviour to adjust to other human beings. It is a crucial social adaptation that happens when people cooperate, where one sacrifices their own perception, expectations, or beliefs to reach convergence with another person. The aim of the present study was to increase the understanding of the neurophysiological underpinnings regarding the social behavioural adjustment of conformity. We start by introducing cooperation and how it is ingrained in human behaviour. Then we explore the different processes that the brain requires for the social behavioural adjustment of conformity. To engage in this social adaptation, a person needs a self-referenced learning mechanism based on a predictive model that helps them track the prediction errors from unexpected events. Also, the brain uses its monitoring and control systems to encode different value functions used in action selection. The use of different learning models in neuroscience, such as reinforcement learning (RL) algorithms, has been a success story identifying learning systems by means of the mapped activity of different regions in the brain. Importantly, experimental paradigms which has been used to study conformity have not been based in a social interaction setting and, hence, the results, cannot be used to explain an inherently social phenomenon. The main goal of the present thesis is to study the neurophysiological mechanisms underlying the social behavioural adjustment of conformity and its modulation with repeated interaction. To reach this goal, we have first designed a new experimental task where conformity appears spontaneously between two persons and in a reiterative way. This design exposes learning acquisition processes, which require iterative loops, as well as other cognitive control mechanisms such as feedback processing, value-based decision making and attention. The first study shows that people who previously cooperate increase their level of convergence and report a significantly more satisfying overall experience. In addition, participants learning on their counterpartsโ€™ behaviour can be explained using a RL algorithm as opposed to when they do not have previously cooperated. In the second study, we have studied the event-related potentials (ERP) and oscillatory power underlying conformity. ERP results show different levels of cognitive engagement that are associated to distinct levels of conformity. Also, time-frequency analysis shows evidence in theta, alpha and beta related to different functions such as cognitive control, attention and, also, reward processing, supporting the idea that convergence between dyads acts as a social reward. Finally, in the third study, we explored the intra- and inter- oscillatory connectivity between electrodes related to behavioural convergence. In intra-brain oscillatory connectivity coherence, we have found two different dynamics related to attention and executive functions in alpha. Also, we have found that the learning about peerโ€™s behaviour as computed using a RL is mediated by theta oscillatory connectivity. Consequently, combined evidence from Study 2 and Study 3 suggests that both cognitive control and learning computations happening in the social behavioural adaptation of conformity are signalled in theta frequency band. The present work is one of the first studies describing, with credible evidence, that conformity, when this occurs willingly and spontaneously rather than induced, engages different brain activity underlying reward-guided learning, cognitive control, and attention.[spa] La conformidad es el acto de cambiar el comportamiento de uno a favor de ajustarnos a otros seres humanos. Se trata de una adaptaciรณn crucial que ocurre cuando la gente coopera, donde uno sacrifica su propia percepciรณn, expectativas o creencias en aras de conseguir una convergencia con la otra persona. El objetivo del presente estudio ha sido tratar de aportar a la comprensiรณn de las estructuras neurofisiolรณgicas que soportan un ajuste social como el de la conformidad. En la primera parte de esta tesis comenzamos hablando de la cooperaciรณn y lo profundamente arraigada que estรก en nuestro comportamiento. Mรกs tarde exploramos diferentes procesos que el cerebro requiere en el ajuste social de la conformidad. Asรญ pues, para involucrarse en esta adaptaciรณn social, una persona requiere de un mecanismo de aprendizaje auto-referenciado basado en un modelo predictivo que le ayude a seguir el rastro de los errores de predicciรณn que acompaรฑan a los eventos inesperados. Ademรกs, el cerebro usa sus sistemas de control y predicciรณn para codificar diferentes funciones de valor usadas en la selecciรณn de acciรณn. El uso de diferentes modelos de aprendizaje en neurociencia, como los algoritmos de aprendizaje por refuerzo (RL), han sido una historia de รฉxito a la hora de identificar los sistemas de aprendizaje a travรฉs del mapeo de la actividad de diferentes regiones del cerebro. Es importante destacar que los paradigmas experimentales que se han usado para estudiar la conformidad no se han basado en entornos de interacciรณn social y que, por lo tanto, sus resultados no pueden usarse para explicar un fenรณmeno inherentemente social. El objetivo principal de la presente tesis es el estudio de los mecanismos neurofisiolรณgicos que fundamentan el comportamiento de ajuste social de la conformidad y su modulaciรณn con la interacciรณn repetida. Para alcanzar este objetivo, primero hemos diseรฑado una nueva tarea experimental en la que la conformidad aparece de forma espontรกnea entre dos personas y, ademรกs, de forma reiterativa. Este diseรฑo permite exponer tanto los procesos de adquisiciรณn del aprendizaje, que requieren de ciclos iterativos, asรญ como otros mecanismos de control cognitivo tales como el procesamiento de la retroalimentaciรณn, las tomas de decisiones basadas en procesos valorativos y la atenciรณn. El primer estudio nos muestra que la gente que coopera previamente incrementa sus niveles de convergencia y reportan significativamente una experiencia generalmente mรกs satisfactoria en el experimento. Adicionalmente, un modelo de RL nos explica que los participantes tratan de aprender del comportamiento de sus parejas en mayor medida si estos han cooperado previamente. En el segundo estudio, hemos estudiado los potenciales relacionados con eventos (ERP) y el poder de las oscilaciones que sustentan la conformidad. Los estudios de ERP muestran diferentes niveles de implicaciรณn cognitiva asociados con diferentes niveles de conformidad. Ademรกs, los anรกlisis de tiempo-frecuencia muestran evidencia en theta, alfa y beta relacionados con diferentes funciones como el control cognitivo, la atenciรณn, y, tambiรฉn, el procesamiento de la recompensa, apoyando la idea de que la convergencia entre dรญadas actรบa como una recompensa social. Finalmente, en el tercer estudio, exploramos la conectividad oscilatoria intra e inter entre electrodos que se pudieran relacionar con la conducta de convergencia. A propรณsito de la conectividad oscilatoria coherente intra, hemos hallado dos dinรกmicas relacionadas con la atenciรณn y las funciones ejecutivas en alfa. Asimismo, hemos encontrado que el aprendizaje de la conducta de la pareja computada a travรฉs de RL estรก mediada a travรฉs de la conectividad oscilatoria de theta. Consecuentemente, la evidencia combinada entre el estudio 2 y el estudio 3 sugiere que conjuntamente el control cognitivo y las computaciones de aprendizaje que ocurren en la conducta de adaptaciรณn social de la conformidad estรกn relacionadas con la actividad de la banda de frecuencia theta. Este trabajo constituye uno de los primeros estudios que describen, con evidencia creรญble, que la conformidad, cuando ocurre voluntaria y espontรกneamente a diferencia cuando esta es inducida, involucra actividad del cerebro que se fundamenta en el aprendizaje guiado por reforzamiento, el control cognitivo y la atenciรณn
    • โ€ฆ
    corecore