34,152 research outputs found

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same

    Pooling or sampling: Collective dynamics for electrical flow estimation

    Get PDF
    The computation of electrical flows is a crucial primitive for many recently proposed optimization algorithms on weighted networks. While typically implemented as a centralized subroutine, the ability to perform this task in a fully decentralized way is implicit in a number of biological systems. Thus, a natural question is whether this task can provably be accomplished in an efficient way by a network of agents executing a simple protocol. We provide a positive answer, proposing two distributed approaches to electrical flow computation on a weighted network: a deterministic process mimicking Jacobi's iterative method for solving linear systems, and a randomized token diffusion process, based on revisiting a classical random walk process on a graph with an absorbing node. We show that both processes converge to a solution of Kirchhoff's node potential equations, derive bounds on their convergence rates in terms of the weights of the network, and analyze their time and message complexity

    Random walks which prefer unvisited edges : exploring high girth even degree expanders in linear time.

    Get PDF
    Let G = (V,E) be a connected graph with |V | = n vertices. A simple random walk on the vertex set of G is a process, which at each step moves from its current vertex position to a neighbouring vertex chosen uniformly at random. We consider a modified walk which, whenever possible, chooses an unvisited edge for the next transition; and makes a simple random walk otherwise. We call such a walk an edge-process (or E -process). The rule used to choose among unvisited edges at any step has no effect on our analysis. One possible method is to choose an unvisited edge uniformly at random, but we impose no such restriction. For the class of connected even degree graphs of constant maximum degree, we bound the vertex cover time of the E -process in terms of the edge expansion rate of the graph G, as measured by eigenvalue gap 1 -λmax of the transition matrix of a simple random walk on G. A vertex v is ℓ -good, if any even degree subgraph containing all edges incident with v contains at least ℓ vertices. A graph G is ℓ -good, if every vertex has the ℓ -good property. Let G be an even degree ℓ -good expander of bounded maximum degree. Any E -process on G has vertex cover time equation image This is to be compared with the Ω(nlog n) lower bound on the cover time of any connected graph by a weighted random walk. Our result is independent of the rule used to select the order of the unvisited edges, which could, for example, be chosen on-line by an adversary. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2013 As no walk based process can cover an n vertex graph in less than n - 1 steps, the cover time of the E -process is of optimal order when ℓ =Θ (log n). With high probability random r -regular graphs, r ≥ 4 even, have ℓ =Ω (log n). Thus the vertex cover time of the E -process on such graphs is Θ(n)

    Polymers Confined between Two Parallel Plane Walls

    Get PDF
    Single three dimensional polymers confined to a slab, i.e. to the region between two parallel plane walls, are studied by Monte Carlo simulations. They are described by NN-step walks on a simple cubic lattice confined to the region 1≤z≤D1 \le z \le D. The simulations cover both regions D>RFD > R_F (where RF∼NνR_F \sim N^\nu is the Flory radius, with ν≈0.587\nu \approx 0.587), as well as the cross-over region in between. Chain lengths are up to N=80,000N=80,000, slab widths up to D=120. In order to test the analysis program and to check for finite size corrections, we actually studied three different models: (a) Ordinary random walks (mimicking Θ\Theta-polymers); (b) Self-avoiding walks (SAW); and (c) Domb-Joyce walks with the self-repulsion tuned to the point where finite size corrections for free (unrestricted) chains are minimal. For the simulations we employ the pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. In addition to the partition sum (which gives us a direct estimate of the forces exerted onto the walls), we measure the density profiles of monomers and of end points transverse to the slab, and the radial extent of the chain parallel to the walls. All scaling laws and some of the universal amplitude ratios are compared to theoretical predictions.Comment: 8 pages, 14 figures include
    • …
    corecore