31,579 research outputs found

    Deep SR-ITM: Joint Learning of Super-Resolution and Inverse Tone-Mapping for 4K UHD HDR Applications

    Full text link
    Recent modern displays are now able to render high dynamic range (HDR), high resolution (HR) videos of up to 8K UHD (Ultra High Definition). Consequently, UHD HDR broadcasting and streaming have emerged as high quality premium services. However, due to the lack of original UHD HDR video content, appropriate conversion technologies are urgently needed to transform the legacy low resolution (LR) standard dynamic range (SDR) videos into UHD HDR versions. In this paper, we propose a joint super-resolution (SR) and inverse tone-mapping (ITM) framework, called Deep SR-ITM, which learns the direct mapping from LR SDR video to their HR HDR version. Joint SR and ITM is an intricate task, where high frequency details must be restored for SR, jointly with the local contrast, for ITM. Our network is able to restore fine details by decomposing the input image and focusing on the separate base (low frequency) and detail (high frequency) layers. Moreover, the proposed modulation blocks apply location-variant operations to enhance local contrast. The Deep SR-ITM shows good subjective quality with increased contrast and details, outperforming the previous joint SR-ITM method.Comment: Accepted at ICCV 2019 (Oral

    Switchable Temporal Propagation Network

    Full text link
    Videos contain highly redundant information between frames. Such redundancy has been extensively studied in video compression and encoding, but is less explored for more advanced video processing. In this paper, we propose a learnable unified framework for propagating a variety of visual properties of video images, including but not limited to color, high dynamic range (HDR), and segmentation information, where the properties are available for only a few key-frames. Our approach is based on a temporal propagation network (TPN), which models the transition-related affinity between a pair of frames in a purely data-driven manner. We theoretically prove two essential factors for TPN: (a) by regularizing the global transformation matrix as orthogonal, the "style energy" of the property can be well preserved during propagation; (b) such regularization can be achieved by the proposed switchable TPN with bi-directional training on pairs of frames. We apply the switchable TPN to three tasks: colorizing a gray-scale video based on a few color key-frames, generating an HDR video from a low dynamic range (LDR) video and a few HDR frames, and propagating a segmentation mask from the first frame in videos. Experimental results show that our approach is significantly more accurate and efficient than the state-of-the-art methods

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Applications of Fog Computing in Video Streaming

    Get PDF
    The purpose of this paper is to show the viability of fog computing in the area of video streaming in vehicles. With the rise of autonomous vehicles, there needs to be a viable entertainment option for users. The cloud fails to address these options due to latency problems experienced during high internet traffic. To improve video streaming speeds, fog computing seems to be the best option. Fog computing brings the cloud closer to the user through the use of intermediary devices known as fog nodes. It does not attempt to replace the cloud but improve the cloud by allowing faster upload and download of information. This paper explores two algorithms that would work well with vehicles and video streaming. This is simulated using a Java application, and then graphically represented. The results showed that the simulation was an accurate model and that the best algorithm for request history maintenance was the variable model

    Temporal Image Fusion

    Full text link
    This paper introduces temporal image fusion. The proposed technique builds upon previous research in exposure fusion and expands it to deal with the limited Temporal Dynamic Range of existing sensors and camera technologies. In particular, temporal image fusion enables the rendering of long-exposure effects on full frame-rate video, as well as the generation of arbitrarily long exposures from a sequence of images of the same scene taken over time. We explore the problem of temporal under-exposure, and show how it can be addressed by selectively enhancing dynamic structure. Finally, we show that the use of temporal image fusion together with content-selective image filters can produce a range of striking visual effects on a given input sequence

    An Online Learning Approach to Model Predictive Control

    Full text link
    Model predictive control (MPC) is a powerful technique for solving dynamic control tasks. In this paper, we show that there exists a close connection between MPC and online learning, an abstract theoretical framework for analyzing online decision making in the optimization literature. This new perspective provides a foundation for leveraging powerful online learning algorithms to design MPC algorithms. Specifically, we propose a new algorithm based on dynamic mirror descent (DMD), an online learning algorithm that is designed for non-stationary setups. Our algorithm, Dynamic Mirror Descent Model Predictive Control (DMD-MPC), represents a general family of MPC algorithms that includes many existing techniques as special instances. DMD-MPC also provides a fresh perspective on previous heuristics used in MPC and suggests a principled way to design new MPC algorithms. In the experimental section of this paper, we demonstrate the flexibility of DMD-MPC, presenting a set of new MPC algorithms on a simple simulated cartpole and a simulated and real-world aggressive driving task. Videos of the real-world experiments can be found at https://youtu.be/vZST3v0_S9w and https://youtu.be/MhuqiHo2t98.Comment: First two authors contributed equall

    Generation of High Dynamic Range Illumination from a Single Image for the Enhancement of Undesirably Illuminated Images

    Full text link
    This paper presents an algorithm that enhances undesirably illuminated images by generating and fusing multi-level illuminations from a single image.The input image is first decomposed into illumination and reflectance components by using an edge-preserving smoothing filter. Then the reflectance component is scaled up to improve the image details in bright areas. The illumination component is scaled up and down to generate several illumination images that correspond to certain camera exposure values different from the original. The virtual multi-exposure illuminations are blended into an enhanced illumination, where we also propose a method to generate appropriate weight maps for the tone fusion. Finally, an enhanced image is obtained by multiplying the equalized illumination and enhanced reflectance. Experiments show that the proposed algorithm produces visually pleasing output and also yields comparable objective results to the conventional enhancement methods, while requiring modest computational loads

    Kernelized Low Rank Representation on Grassmann Manifolds

    Full text link
    Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized framework. The new methods have many applications in computer vision tasks. Several clustering experiments are conducted on handwritten digit images, dynamic textures, human face clips and traffic scene sequences. The experimental results show that the proposed methods outperform a number of state-of-the-art subspace clustering methods.Comment: 13 page

    Time Series Classification using the Hidden-Unit Logistic Model

    Full text link
    We present a new model for time series classification, called the hidden-unit logistic model, that uses binary stochastic hidden units to model latent structure in the data. The hidden units are connected in a chain structure that models temporal dependencies in the data. Compared to the prior models for time series classification such as the hidden conditional random field, our model can model very complex decision boundaries because the number of latent states grows exponentially with the number of hidden units. We demonstrate the strong performance of our model in experiments on a variety of (computer vision) tasks, including handwritten character recognition, speech recognition, facial expression, and action recognition. We also present a state-of-the-art system for facial action unit detection based on the hidden-unit logistic model.Comment: 17 pages, 4 figures, 3 table

    Delay-aware Fountain Codes for Video Streaming with Optimal Sampling Strategy

    Full text link
    The explosive demand of on-line video from smart mobile devices poses unprecedented challenges to delivering high quality of experience (QoE) over wireless networks. Streaming high-definition video with low delay is difficult mainly due to (i) the stochastic nature of wireless channels and (ii) the fluctuating videos bit rate. To address this, we propose a novel delay-aware fountain coding (DAF) technique that integrates channel coding and video coding. In this paper, we reveal that the fluctuation of video bit rate can also be exploited to further improve fountain codes for wireless video streaming. Specifically, we develop two coding techniques: the time-based sliding window and the optimal window-wise sampling strategy. By adaptively selecting the window length and optimally adjusting the sampling pattern according to the ongoing video bit rate, the proposed schemes deliver significantly higher video quality than existing schemes, with low delay and constant data rate. To validate our design, we implement the protocols of DAF, DAF-L (a low-complexity version) and the existing delay-aware video streaming schemes by streaming H.264/AVC standard videos over an 802.11b network on CORE emulation platform. The results show that the decoding ratio of our scheme is 15% to 100% higher than the state of the art techniques.Comment: 12 pages, 15 figure
    corecore