175 research outputs found

    Knowledge Base Completion: Baselines Strike Back

    Full text link
    Many papers have been published on the knowledge base completion task in the past few years. Most of these introduce novel architectures for relation learning that are evaluated on standard datasets such as FB15k and WN18. This paper shows that the accuracy of almost all models published on the FB15k can be outperformed by an appropriately tuned baseline - our reimplementation of the DistMult model. Our findings cast doubt on the claim that the performance improvements of recent models are due to architectural changes as opposed to hyper-parameter tuning or different training objectives. This should prompt future research to re-consider how the performance of models is evaluated and reported

    Augmentic Compositional Models for Knowledge Base Completion Using Gradient Representations

    Get PDF
    Neural models of Knowledge Base data have typically employed compositional representations of graph objects: entity and relation embeddings are systematically combined to evaluate the truth of a candidate Knowedge Base entry. Using a model inspired by Harmonic Grammar, we propose to tokenize triplet embeddings by subjecting them to a process of optimization with respect to learned well-formedness conditions on Knowledge Base triplets. The resulting model, known as Gradient Graphs, leads to sizable improvements when implemented as a companion to compositional models. Also, we show that the supracompositional triplet token embeddings it produces have interpretable properties that prove helpful in performing inference on the resulting triplet representations

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Holographic flavor in theories with eight supercharges

    Full text link
    We review the holographic duals of gauge theories with eight supercharges obtained by adding very few flavors to pure supersymmetric Yang-Mills with sixteen supercharges. Assuming a brane-probe limit, the gravity duals are engineered in terms of probe branes (the so-called flavor brane) in the background of the color branes. Both types of branes intersect on a given subspace in which the matter is confined. The gauge theory dual is thus the corresponding flavoring of the gauge theory with sixteen supercharges. Those theories have in general a non-trivial phase structure; which is also captured in a beautiful way by the gravity dual. Along the lines of the gauge/gravity duality, we review also some of the results on the meson spectrum in the different phases of the theories.Comment: Invited review submitted to IJMP

    Infrared Dynamics of a Large N QCD Model, the Massless String Sector and Mesonic Spectra

    Full text link
    A consistency check for any UV complete model for large N QCD should be, among other things, the existence of a well-defined vector and scalar mesonic spectra. In this paper, we use our UV complete model in type IIB string theory to study the IR dynamics and use this to predict the mesonic spectra in the dual type IIA side. The advantage of this approach is two-fold: not only will this justify the consistency of the supergravity approach, but it will also give us a way to compare the IR spectra and the model with the ones proposed earlier by Sakai and Sugimoto. Interestingly, the spectra coming from the massless stringy sector are independent of the UV physics, although the massive string sector may pose certain subtleties regarding the UV contributions as well as the mappings to actual QCD. Additionally, we find that a component of the string landscape enters the picture: there are points in the landscape where the spectra can be considerably improved over the existing results in the literature. These points in the landscape in-turn also determine certain background supergravity components and fix various pathologies that eventually lead to a consistent low energy description of the theory.Comment: 47 pages, 7 pdf figures, 24 tables, JHEP format; Detailed mathematica file of the computations is available on request; Version 2: Text elaborated, typos corrected, a new appendix added to discuss the regimes of validity, and a word in the abstract changed. Results unchanged. Final version to appear in JHE
    • 

    corecore