999 research outputs found

    Beyond the Existential Theory of the Reals

    Full text link
    We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by B\"{u}rgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow

    The quantum measurement problem and physical reality: a computation theoretic perspective

    Full text link
    Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.Comment: Talk presented at "Quantum Computing: Back Action 2006", IIT Kanpur, India, March 200

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    Resource Bounded Unprovability of Computational Lower Bounds

    Full text link
    This paper introduces new notions of asymptotic proofs, PT(polynomial-time)-extensions, PTM(polynomial-time Turing machine)-omega-consistency, etc. on formal theories of arithmetic including PA (Peano Arithmetic). This paper shows that P not= NP (more generally, any super-polynomial-time lower bound in PSPACE) is unprovable in a PTM-omega-consistent theory T, where T is a consistent PT-extension of PA. This result gives a unified view to the existing two major negative results on proving P not= NP, Natural Proofs and relativizable proofs, through the two manners of characterization of PTM-omega-consistency. We also show that the PTM-omega-consistency of T cannot be proven in any PTM-omega-consistent theory S, where S is a consistent PT-extension of T.Comment: 78 page
    corecore