196 research outputs found

    Geometrically closed rings

    Full text link
    We develop the basic theory of geometrically closed rings as a generalisation of algebraically closed fields, on the grounds of notions coming from positive model theory and affine algebraic geometry. For this purpose we consider several connections between finitely presented rings and ultraproducts, affine varieties and definable sets, and we introduce the key notion of an arithmetic theory as a purely algebraic version of coherent logic for rings.Comment: 18 page

    A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine

    Full text link
    Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic.Comment: Identical to the final version of the paper as appears in proceedings of LICS 2016, formatted for on-screen readin

    Enforcing Architectural Styles in Presence of Unexpected Distributed Reconfigurations

    Full text link
    Architectural Design Rewriting (ADR, for short) is a rule-based formal framework for modelling the evolution of architectures of distributed systems. Rules allow ADR graphs to be refined. After equipping ADR with a simple logic, we equip rules with pre- and post-conditions; the former constraints the applicability of the rules while the later specifies properties of the resulting graphs. We give an algorithm to compute the weakest pre-condition out of a rule and its post-condition. On top of this algorithm, we design a simple methodology that allows us to select which rules can be applied at the architectural level to reconfigure a system so to regain its architectural style when it becomes compromised by unexpected run-time reconfigurations.Comment: In Proceedings ICE 2012, arXiv:1212.345

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange
    • …
    corecore