2,666 research outputs found

    Pre-logarithmic and logarithmic fields in a sandpile model

    Full text link
    We consider the unoriented two-dimensional Abelian sandpile model on the half-plane with open and closed boundary conditions, and relate it to the boundary logarithmic conformal field theory with central charge c=-2. Building on previous results, we first perform a complementary lattice analysis of the operator effecting the change of boundary condition between open and closed, which confirms that this operator is a weight -1/8 boundary primary field, whose fusion agrees with lattice calculations. We then consider the operators corresponding to the unit height variable and to a mass insertion at an isolated site of the upper half plane and compute their one-point functions in presence of a boundary containing the two kinds of boundary conditions. We show that the scaling limit of the mass insertion operator is a weight zero logarithmic field.Comment: 18 pages, 9 figures. v2: minor corrections + added appendi

    A study of the classification of low-dimensional data with supervised manifold learning

    Full text link
    Supervised manifold learning methods learn data representations by preserving the geometric structure of data while enhancing the separation between data samples from different classes. In this work, we propose a theoretical study of supervised manifold learning for classification. We consider nonlinear dimensionality reduction algorithms that yield linearly separable embeddings of training data and present generalization bounds for this type of algorithms. A necessary condition for satisfactory generalization performance is that the embedding allow the construction of a sufficiently regular interpolation function in relation with the separation margin of the embedding. We show that for supervised embeddings satisfying this condition, the classification error decays at an exponential rate with the number of training samples. Finally, we examine the separability of supervised nonlinear embeddings that aim to preserve the low-dimensional geometric structure of data based on graph representations. The proposed analysis is supported by experiments on several real data sets

    Randomized Consensus with Attractive and Repulsive Links

    Full text link
    We study convergence properties of a randomized consensus algorithm over a graph with both attractive and repulsive links. At each time instant, a node is randomly selected to interact with a random neighbor. Depending on if the link between the two nodes belongs to a given subgraph of attractive or repulsive links, the node update follows a standard attractive weighted average or a repulsive weighted average, respectively. The repulsive update has the opposite sign of the standard consensus update. In this way, it counteracts the consensus formation and can be seen as a model of link faults or malicious attacks in a communication network, or the impact of trust and antagonism in a social network. Various probabilistic convergence and divergence conditions are established. A threshold condition for the strength of the repulsive action is given for convergence in expectation: when the repulsive weight crosses this threshold value, the algorithm transits from convergence to divergence. An explicit value of the threshold is derived for classes of attractive and repulsive graphs. The results show that a single repulsive link can sometimes drastically change the behavior of the consensus algorithm. They also explicitly show how the robustness of the consensus algorithm depends on the size and other properties of the graphs
    • …
    corecore