203,577 research outputs found

    Completion of the mixed unit interval graphs hierarchy

    Full text link
    We describe the missing class of the hierarchy of mixed unit interval graphs, generated by the intersection graphs of closed, open and one type of half-open intervals of the real line. This class lies strictly between unit interval graphs and mixed unit interval graphs. We give a complete characterization of this new class, as well as quadratic-time algorithms that recognize graphs from this class and produce a corresponding interval representation if one exists. We also mention that the work in arXiv:1405.4247 directly extends to provide a quadratic-time algorithm to recognize the class of mixed unit interval graphs.Comment: 17 pages, 36 figures (three not numbered). v1 Accepted in the TAMC 2015 conference. The recognition algorithm is faster in v2. One graph was not listed in Theorem 7 of v1 of this paper v3 provides a proposition to recognize the mixed unit interval graphs in quadratic time. v4 is a lot cleare

    A Characterization of Mixed Unit Interval Graphs

    Full text link
    We give a complete characterization of mixed unit interval graphs, the intersection graphs of closed, open, and half-open unit intervals of the real line. This is a proper superclass of the well known unit interval graphs. Our result solves a problem posed by Dourado, Le, Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure
    corecore