22 research outputs found

    Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing - a computer assisted proof

    Full text link
    We prove the existence of globally attracting solutions of the viscous Burgers equation with periodic boundary conditions on the line for some particular choices of viscosity and non-autonomous forcing. The attract- ing solution is periodic if the forcing is periodic. The method is general and can be applied to other similar partial differential equations. The proof is computer assisted.Comment: 38 pages, 1 figur

    Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof

    Full text link
    We present a computer assisted method for proving the existence of globally attracting fixed points of dissipative PDEs. An application to the viscous Burgers equation with periodic boundary conditions and a forcing function constant in time is presented as a case study. We establish the existence of a locally attracting fixed point by using rigorous numerics techniques. To prove that the fixed point is, in fact, globally attracting we introduce a technique relying on a construction of an absorbing set, capturing any sufficiently regular initial condition after a finite time. Then the absorbing set is rigorously integrated forward in time to verify that any sufficiently regular initial condition is in the basin of attraction of the fixed point.Comment: To appear in Topological Methods in Nonlinear Analysis, 201

    Rigorous numerics for PDEs with indefinite tail: existence of a periodic solution of the Boussinesq equation with time-dependent forcing

    Get PDF
    We consider the Boussinesq PDE perturbed by a time-dependent forcing. Even though there is no smoothing effect for arbitrary smooth initial data, we are able to apply the method of self-consistent bounds to deduce the existence of smooth classical periodic solutions in the vicinity of 0. The proof is non-perturbative and relies on construction of periodic isolating segments in the Galerkin projections

    Stabilizing effect of large average initial velocity in forced dissipative PDEs invariant with respect to Galilean transformations

    Full text link
    We describe a topological method to study the dynamics of dissipative PDEs on a torus with rapidly oscillating forcing terms. We show that a dissipative PDE, which is invariant with respect to Galilean transformations, with a large average initial velocity can be reduced to a problem with rapidly oscillating forcing terms. We apply the technique to the Burgers equation, and the incompressible 2D Navier-Stokes equations with a time-dependent forcing. We prove that for a large initial average speed the equation admits a bounded eternal solution, which attracts all other solutions forward in time. For the incompressible 3D Navier-Stokes equations we establish existence of a locally attracting solution

    On non-autonomously forced Burgers equation with periodic and Dirichlet boundary conditions

    Full text link
    We study the non-autonomously forced Burgers equation ut(x,t)+u(x,t)ux(x,t)uxx(x,t)=f(x,t) u_t(x,t) + u(x,t)u_x(x,t) - u_{xx}(x,t) = f(x,t) on the space interval (0,1)(0,1) with two sets of the boundary conditions: the Dirichlet and periodic ones. For both situations we prove that there exists the unique H1H^1 bounded trajectory of this equation defined for all tRt\in \mathbb{R}. Moreover we demonstrate that this trajectory attracts all trajectories both in pullback and forward sense. We also prove that for the Dirichlet case this attraction is exponential

    Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model

    Full text link
    We present a computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential equation subject to homogeneous Neumann boundary conditions, which contains as a special case the celebrated Cahn-Hilliard equation. While the attractor structure of the latter model is completely understood for one-dimensional domains, the diblock copolymer extension exhibits considerably richer long-term dynamical behavior, which includes a high level of multistability. In this paper, we establish the existence of certain heteroclinic connections between the homogeneous equilibrium state, which represents a perfect copolymer mixture, and all local and global energy minimizers. In this way, we show that not every solution originating near the homogeneous state will converge to the global energy minimizer, but rather is trapped by a stable state with higher energy. This phenomenon can not be observed in the one-dimensional Cahn-Hillard equation, where generic solutions are attracted by a global minimizer

    Families of periodic solutions for some hamiltonian PDEs

    Get PDF
    We consider the nonlinear wave equation utt -uxx = ±u3 and the beam equation utt +uxxxx = ±u3 on an interval. Numerical observations indicate that time-periodic solutions for these equations are organized into structures that resemble branches and seem to undergo bifurcations. In addition to describing our observations, we prove the existence of time-periodic solutions for various periods (a set of positive measure in the case of the beam equation) along the main nontrivial "branch." Our proofs are computer-Assisted
    corecore