4,913 research outputs found

    On Bounded Positive Stationary Solutions for a Nonlocal Fisher-KPP Equation

    Full text link
    We study the existence of stationary solutions for a nonlocal version of the Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation. The main motivation is a recent study by Berestycki et {al.} [Nonlinearity 22 (2009), {pp.}~2813--2844] where the nonlocal FKPP equation has been studied and it was shown for the spatial domain R\mathbb{R} andsufficiently small nonlocality that there are only two bounded non-negative stationary solutions. Here we provide a similar result for Rd\mathbb{R}^d using a completely different approach. In particular, an abstract perturbation argument is used in suitable weighted Sobolev spaces. One aim of the alternative strategy is that it can eventually be generalized to obtain persistence results for hyperbolic invariant sets for other nonlocal evolution equations on unbounded domains with small nonlocality, {i.e.}, to improve our understanding in applications when a small nonlocal influence alters the dynamics and when it does not.Comment: 24 pages, 1 figure; revised versio

    On the existence of oscillating solutions in non-monotone Mean-Field Games

    Get PDF
    For non-monotone single and two-populations time-dependent Mean-Field Game systems we obtain the existence of an infinite number of branches of non-trivial solutions. These non-trivial solutions are in particular shown to exhibit an oscillatory behaviour when they are close to the trivial (constant) one. The existence of such branches is derived using local and global bifurcation methods, that rely on the analysis of eigenfunction expansions of solutions to the associated linearized problem. Numerical analysis is performed on two different models to observe the oscillatory behaviour of solutions predicted by bifurcation theory, and to study further properties of branches far away from bifurcation points.Comment: 24 pages, 10 figure

    String Instabilities in Black Hole Spacetimes

    Full text link
    We study the emergence of string instabilities in DD - dimensional black hole spacetimes (Schwarzschild and Reissner - Nordstr\o m), and De Sitter space (in static coordinates to allow a better comparison with the black hole case). We solve the first order string fluctuations around the center of mass motion at spatial infinity, near the horizon and at the spacetime singularity. We find that the time components are always well behaved in the three regions and in the three backgrounds. The radial components are {\it unstable}: imaginary frequencies develop in the oscillatory modes near the horizon, and the evolution is like (ττ0)P(\tau-\tau_0)^{-P}, (P>0)(P>0), near the spacetime singularity, r0r\to0, where the world - sheet time (ττ0)0(\tau-\tau_0)\to0, and the proper string length grows infinitely. In the Schwarzschild black hole, the angular components are always well - behaved, while in the Reissner - Nordstr\o m case they develop instabilities inside the horizon, near r0r\to0 where the repulsive effects of the charge dominate over those of the mass. In general, whenever large enough repulsive effects in the gravitational background are present, string instabilities develop. In De Sitter space, all the spatial components exhibit instability. The infalling of the string to the black hole singularity is like the motion of a particle in a potential γ(ττ0)2\gamma(\tau-\tau_0)^{-2} where γ\gamma depends on the DD spacetime dimensions and string angular momentum, with γ>0\gamma>0 for Schwarzschild and γ<0\gamma<0 for Reissner - Nordstr\o m black holes. For (ττ0)0(\tau-\tau_0)\to0 the string ends trapped by the black hole singularity.Comment: 26pages, Plain Te

    Nonlinear Eigenvalues and Bifurcation Problems for Pucci's Operator

    Get PDF
    In this paper we extend existing results concerning generalized eigenvalues of Pucci's extremal operators. In the radial case, we also give a complete description of their spectrum, together with an equivalent of Rabinowitz's Global Bifurcation Theorem. This allows us to solve equations involving Pucci's operators

    Coupled complex Ginzburg-Landau systems with saturable nonlinearity and asymmetric cross-phase modulation

    Full text link
    We formulate and study dynamics from a complex Ginzburg-Landau system with saturable nonlinearity, including asymmetric cross-phase modulation (XPM) parameters. Such equations can model phenomena described by complex Ginzburg-Landau systems under the added assumption of saturable media. When the saturation parameter is set to zero, we recover a general complex cubic Ginzburg-Landau system with XPM. We first derive conditions for the existence of bounded dynamics, approximating the absorbing set for solutions. We use this to then determine conditions for amplitude death of a single wavefunction. We also construct exact plane wave solutions, and determine conditions for their modulational instability. In a degenerate limit where dispersion and nonlinearity balance, we reduce our system to a saturable nonlinear Schr\"odinger system with XPM parameters, and we demonstrate the existence and behavior of spatially heterogeneous stationary solutions in this limit. Using numerical simulations we verify the aforementioned analytical results, while also demonstrating other interesting emergent features of the dynamics, such as spatiotemporal chaos in the presence of modulational instability. In other regimes, coherent patterns including uniform states or banded structures arise, corresponding to certain stable stationary states. For sufficiently large yet equal XPM parameters, we observe a segregation of wavefunctions into different regions of the spatial domain, while when XPM parameters are large and take different values, one wavefunction may decay to zero in finite time over the spatial domain (in agreement with the amplitude death predicted analytically). While saturation will often regularize the dynamics, such transient dynamics can still be observed - and in some cases even prolonged - as the saturability of the media is increased, as the saturation may act to slow the timescale.Comment: 36 page

    Asymptotic solutions of forced nonlinear second order differential equations and their extensions

    Full text link
    Using a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented
    corecore