361 research outputs found

    A polynomial-time approximation algorithm for the number of k-matchings in bipartite graphs

    Full text link
    We show that the number of kk-matching in a given undirected graph GG is equal to the number of perfect matching of the corresponding graph GkG_k on an even number of vertices divided by a suitable factor. If GG is bipartite then one can construct a bipartite GkG_k. For bipartite graphs this result implies that the number of kk-matching has a polynomial-time approximation algorithm. The above results are extended to permanents and hafnians of corresponding matrices.Comment: 6 page

    Rainbow perfect matchings in r-partite graph structures

    Get PDF
    A matching M in an edge–colored (hyper)graph is rainbow if each pair of edges in M have distinct colors. We extend the result of Erdos and Spencer on the existence of rainbow perfect matchings in the complete bipartite graph Kn,n to complete bipartite multigraphs, dense regular bipartite graphs and complete r-partite r-uniform hypergraphs. The proof of the results use the Lopsided version of the Local Lovász Lemma.Peer ReviewedPostprint (author's final draft

    Strong games played on random graphs

    Get PDF
    In a strong game played on the edge set of a graph G there are two players, Red and Blue, alternating turns in claiming previously unclaimed edges of G (with Red playing first). The winner is the first one to claim all the edges of some target structure (such as a clique, a perfect matching, a Hamilton cycle, etc.). It is well known that Red can always ensure at least a draw in any strong game, but finding explicit winning strategies is a difficult and a quite rare task. We consider strong games played on the edge set of a random graph G ~ G(n,p) on n vertices. We prove, for sufficiently large nn and a fixed constant 0 < p < 1, that Red can w.h.p win the perfect matching game on a random graph G ~ G(n,p)

    Tilings in randomly perturbed dense graphs

    Get PDF
    A perfect HH-tiling in a graph GG is a collection of vertex-disjoint copies of a graph HH in GG that together cover all the vertices in GG. In this paper we investigate perfect HH-tilings in a random graph model introduced by Bohman, Frieze and Martin in which one starts with a dense graph and then adds mm random edges to it. Specifically, for any fixed graph HH, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect HH-tiling with high probability. Our proof utilises Szemer\'edi's Regularity lemma as well as a special case of a result of Koml\'os concerning almost perfect HH-tilings in dense graphs.Comment: 19 pages, to appear in CP
    • …
    corecore