1,338 research outputs found

    Variational principles for circle patterns

    Full text link
    A Delaunay cell decomposition of a surface with constant curvature gives rise to a circle pattern, consisting of the circles which are circumscribed to the facets. We treat the problem whether there exists a Delaunay cell decomposition for a given (topological) cell decomposition and given intersection angles of the circles, whether it is unique and how it may be constructed. Somewhat more generally, we allow cone-like singularities in the centers and intersection points of the circles. We prove existence and uniqueness theorems for the solution of the circle pattern problem using a variational principle. The functionals (one for the euclidean, one for the hyperbolic case) are convex functions of the radii of the circles. The analogous functional for the spherical case is not convex, hence this case is treated by stereographic projection to the plane. From the existence and uniqueness of circle patterns in the sphere, we derive a strengthened version of Steinitz' theorem on the geometric realizability of abstract polyhedra. We derive the variational principles of Colin de Verdi\`ere, Br\"agger, and Rivin for circle packings and circle patterns from our variational principles. In the case of Br\"agger's and Rivin's functionals. Leibon's functional for hyperbolic circle patterns cannot be derived directly from our functionals. But we construct yet another functional from which both Leibon's and our functionals can be derived. We present Java software to compute and visualize circle patterns.Comment: PhD thesis, iv+94 pages, many figures (mostly vector graphics

    Gauss images of hyperbolic cusps with convex polyhedral boundary

    Full text link
    We prove that a 3--dimensional hyperbolic cusp with convex polyhedral boundary is uniquely determined by its Gauss image. Furthermore, any spherical metric on the torus with cone singularities of negative curvature and all closed contractible geodesics of length greater than 2Ï€2\pi is the metric of the Gauss image of some convex polyhedral cusp. This result is an analog of the Rivin-Hodgson theorem characterizing compact convex hyperbolic polyhedra in terms of their Gauss images. The proof uses a variational method. Namely, a cusp with a given Gauss image is identified with a critical point of a functional on the space of cusps with cone-type singularities along a family of half-lines. The functional is shown to be concave and to attain maximum at an interior point of its domain. As a byproduct, we prove rigidity statements with respect to the Gauss image for cusps with or without cone-type singularities. In a special case, our theorem is equivalent to existence of a circle pattern on the torus, with prescribed combinatorics and intersection angles. This is the genus one case of a theorem by Thurston. In fact, our theorem extends Thurston's theorem in the same way as Rivin-Hodgson's theorem extends Andreev's theorem on compact convex polyhedra with non-obtuse dihedral angles. The functional used in the proof is the sum of a volume term and curvature term. We show that, in the situation of Thurston's theorem, it is the potential for the combinatorial Ricci flow considered by Chow and Luo. Our theorem represents the last special case of a general statement about isometric immersions of compact surfaces.Comment: 55 pages, 17 figure

    Minimal surfaces from circle patterns: Geometry from combinatorics

    Full text link
    We suggest a new definition for discrete minimal surfaces in terms of sphere packings with orthogonally intersecting circles. These discrete minimal surfaces can be constructed from Schramm's circle patterns. We present a variational principle which allows us to construct discrete analogues of some classical minimal surfaces. The data used for the construction are purely combinatorial--the combinatorics of the curvature line pattern. A Weierstrass-type representation and an associated family are derived. We show the convergence to continuous minimal surfaces.Comment: 30 pages, many figures, some in reduced resolution. v2: Extended introduction. Minor changes in presentation. v3: revision according to the referee's suggestions, improved & expanded exposition, references added, minor mistakes correcte

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200
    • …
    corecore