245 research outputs found

    Improving Newton's method performance by parametrization: the case of Richards equation

    Get PDF
    The nonlinear systems obtained by discretizing degenerate parabolic equations may be hard to solve, especially with Newton's method. In this paper, we apply to Richards equation a strategy that consists in defining a new primary unknown for the continuous equation in order to stabilize Newton's method by parametrizing the graph linking the pressure and the saturation. The resulting form of Richards equation is then discretized thanks to a monotone Finite Volume scheme. We prove the well-posedness of the numerical scheme. Then we show under appropriate non-degeneracy conditions on the parametrization that Newton\^as method converges locally and quadratically. Finally, we provide numerical evidences of the efficiency of our approach

    Mini-Workshop: Numerical Analysis for Non-Smooth PDE-Constrained Optimal Control Problems

    Get PDF
    This mini-workshop brought together leading experts working on various aspects of numerical analysis for optimal control problems with nonsmoothness. Fifteen extended abstracts summarize the presentations at this mini-workshop

    Challenges in Optimal Control of Nonlinear PDE-Systems

    Get PDF
    The workshop focussed on various aspects of optimal control problems for systems of nonlinear partial differential equations. In particular, discussions around keynote presentations in the areas of optimal control of nonlinear/non-smooth systems, optimal control of systems involving nonlocal operators, shape and topology optimization, feedback control and stabilization, sparse control, and associated numerical analysis as well as design and analysis of solution algorithms were promoted. Moreover, also aspects of control of fluid structure interaction problems as well as problems arising in the optimal control of quantum systems were considered

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications

    Annual Research Report 2021

    Get PDF
    corecore