16 research outputs found

    Hamiltonicity problems in random graphs

    Get PDF
    In this thesis, we present some of the main results proved by the author while fulfilling his PhD. While we present all the relevant results in the introduction of the thesis, we have chosen to focus on two of the main ones. First, we show a very recent development about Hamiltonicity in random subgraphs of the hypercube, where we have resolved a long standing conjecture dating back to the 1980s. Second, we present some original results about correlations between the appearance of edges in random regular hypergraphs, which have many applications in the study of subgraphs of random regular hypergraphs. In particular, these applications include subgraph counts and property testing

    Generation of structures in chemistry and mathematics

    Get PDF

    On Approximability, Convergence, and Limits of CSP Problems

    Get PDF
    This thesis studies dense constraint satisfaction problems (CSPs), and other related optimization and decision problems that can be phrased as questions regarding parameters or properties of combinatorial objects such as uniform hypergraphs. We concentrate on the information that can be derived from a very small substructure that is selected uniformly at random. In this thesis, we present a unified framework on the limits of CSPs in the sense of the convergence notion of Lovasz-Szegedy that depends only on the remarkable connection between graph sequences and exchangeable arrays established by Diaconis-Janson. In particular, we formulate and prove a representation theorem for compact colored r-uniform directed hypergraphs and apply this to rCSPs. We investigate the sample complexity of testable r-graph parameters, and discuss a generalized version of ground state energies (GSE) and demonstrate that they are efficiently testable. The GSE is a term borrowed from statistical physics that stands for a generalized version of maximal multiway cut problems from complexity theory, and was studied in the dense graph setting by Borgs et al. A notion related to testing CSPs that are defined on graphs, the nondeterministic property testing, was introduced by Lovasz-Vesztergombi, which extends the graph property testing framework of Goldreich-Goldwasser-Ron in the dense graph model. In this thesis, we study the sample complexity of nondeterministically testable graph parameters and properties and improve existing bounds by several orders of magnitude. Further, we prove the equivalence of the notions of nondeterministic and deterministic parameter and property testing for uniform dense hypergraphs of arbitrary rank, and provide the first effective upper bound on the sample complexity in this general case

    Discrete Geometry and Convexity in Honour of Imre Bárány

    Get PDF
    This special volume is contributed by the speakers of the Discrete Geometry and Convexity conference, held in Budapest, June 19–23, 2017. The aim of the conference is to celebrate the 70th birthday and the scientific achievements of professor Imre Bárány, a pioneering researcher of discrete and convex geometry, topological methods, and combinatorics. The extended abstracts presented here are written by prominent mathematicians whose work has special connections to that of professor Bárány. Topics that are covered include: discrete and combinatorial geometry, convex geometry and general convexity, topological and combinatorial methods. The research papers are presented here in two sections. After this preface and a short overview of Imre Bárány’s works, the main part consists of 20 short but very high level surveys and/or original results (at least an extended abstract of them) by the invited speakers. Then in the second part there are 13 short summaries of further contributed talks. We would like to dedicate this volume to Imre, our great teacher, inspiring colleague, and warm-hearted friend

    Collected Papers (on various scientific topics), Volume XII

    Get PDF
    This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.‬‬‬‬‬

    Real-time optimization of working memory in autonomous reasoning for high-level control of cognitive robots deployed in dynamic environments

    Get PDF
    High-level, real-time mission control of autonomous and semi-autonomous robots, deployed in remote and dynamic environments, remains a research challenge. Robots operating in these environments require some cognitive ability, provided by a simple, but robust, cognitive architecture. The most important process in a cognitive architecture is the working memory, with core functions being memory representation, memory recall, action selection and action execution, performed by the central executive. The cognitive reasoning process uses a memory representation, based on state flows, governed by state transitions with simple, quantified propositional transition formulae. In this thesis, real-time working memory quantification and optimization is performed using a novel adaptive entropy-based fitness quantification (AEFQ) algorithm and particle swarm optimization (PSO), respectively. A cognitive architecture, using an improved set-based PSO is developed for real-time, high-level control of single-task robots and a novel coalitional games-theoretic PSO (CG-PSO) algorithm extends the cognitive architecture for real-time, high-level control in multi-task robots. The performance of the cognitive architecture is evaluated by simulation, where a UAV executesfour use cases: Firstly, for real-time high-level, single-task control: 1) relocating the UAV to a charging station and 2) collecting and delivering medical equipment. Performance is measured by inspecting the success and completeness of the mission and the accuracy of autonomous flight control. Secondly, for real-time high-level control of multi-task autonomous vehicle control: 3) delivering medical equipment to an incident and 4) provide aerial security surveillance support. The performance of the architecture is measured in terms of completeness and cognitive processing time and cue processing time. The results show that coalitions correctly represent optimal memory and action selection in real-time, while overall processing time is within a feasible time limit, arbitrarily set to 2 seconds in this study

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Optimal control and approximations

    Get PDF
    corecore