21 research outputs found

    Spikes, synchrony, sequences and Schistocerca's sense of smell

    Get PDF

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case

    Dynamics of Macrosystems; Proceedings of a Workshop, September 3-7, 1984

    Get PDF
    There is an increasing awareness of the important and persuasive role that instability and random, chaotic motion play in the dynamics of macrosystems. Further research in the field should aim at providing useful tools, and therefore the motivation should come from important questions arising in specific macrosystems. Such systems include biochemical networks, genetic mechanisms, biological communities, neutral networks, cognitive processes and economic structures. This list may seem heterogeneous, but there are similarities between evolution in the different fields. It is not surprising that mathematical methods devised in one field can also be used to describe the dynamics of another. IIASA is attempting to make progress in this direction. With this aim in view this workshop was held at Laxenburg over the period 3-7 September 1984. These Proceedings cover a broad canvas, ranging from specific biological and economic problems to general aspects of dynamical systems and evolutionary theory

    Form vs. Function: Theory and Models for Neuronal Substrates

    Get PDF
    The quest for endowing form with function represents the fundamental motivation behind all neural network modeling. In this thesis, we discuss various functional neuronal architectures and their implementation in silico, both on conventional computer systems and on neuromorpic devices. Necessarily, such casting to a particular substrate will constrain their form, either by requiring a simplified description of neuronal dynamics and interactions or by imposing physical limitations on important characteristics such as network connectivity or parameter precision. While our main focus lies on the computational properties of the studied models, we augment our discussion with rigorous mathematical formalism. We start by investigating the behavior of point neurons under synaptic bombardment and provide analytical predictions of single-unit and ensemble statistics. These considerations later become useful when moving to the functional network level, where we study the effects of an imperfect physical substrate on the computational properties of several cortical networks. Finally, we return to the single neuron level to discuss a novel interpretation of spiking activity in the context of probabilistic inference through sampling. We provide analytical derivations for the translation of this ``neural sampling'' framework to networks of biologically plausible and hardware-compatible neurons and later take this concept beyond the realm of brain science when we discuss applications in machine learning and analogies to solid-state systems
    corecore