86 research outputs found

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    Asymptotic behavior of global entropy solutions for nonstrictly hyperbolic systems with linear damping

    Full text link
    In this paper we investigate the large time behavior of the global weak entropy solutions to the symmetric Keyftiz-Kranzer system with linear damping. It is proved that as t tends to infinite the entropy solutions tend to zero in the L p nor

    Weak Continuity and Compactness for Nonlinear Partial Differential Equations

    Full text link
    We present several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. We first focus on the compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropy flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multidimensional steady compressible fluids. We then analyze the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.Comment: 29 page

    Finite difference schemes for the symmetric Keyfitz-Kranzer system

    Full text link
    We are concerned with the convergence of numerical schemes for the initial value problem associated to the Keyfitz-Kranzer system of equations. This system is a toy model for several important models such as in elasticity theory, magnetohydrodynamics, and enhanced oil recovery. In this paper we prove the convergence of three difference schemes. Two of these schemes is shown to converge to the unique entropy solution. Finally, the convergence is illustrated by several examples.Comment: 31 page

    Stability of Transonic Characteristic Discontinuities in Two-Dimensional Steady Compressible Euler Flows

    Full text link
    For a two-dimensional steady supersonic Euler flow past a convex cornered wall with right angle, a characteristic discontinuity (vortex sheet and/or entropy wave) is generated, which separates the supersonic flow from the gas at rest (hence subsonic). We proved that such a transonic characteristic discontinuity is structurally stable under small perturbations of the upstream supersonic flow in BVBV. The existence of a weak entropy solution and Lipschitz continuous free boundary (i.e. characteristic discontinuity) is established. To achieve this, the problem is formulated as a free boundary problem for a nonstrictly hyperbolic system of conservation laws; and the free boundary problem is then solved by analyzing nonlinear wave interactions and employing the front tracking method.Comment: 26 pages, 3 figure

    A note on “well-posedness theory for hyperbolic conservation laws”

    Get PDF
    AbstractIn this note, we generalize the recent result on L1 well-posedness theory for strictly hyperbolic conservation laws to the nonstrictly hyperbolic system of conservation laws whose characteristics are with constant multiplicity

    Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation

    Full text link
    In this paper, firstly, by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation, we construct parameterized delta-shock and constant density solutions, then we show that, as the flux perturbation vanishes, they converge to the delta-shock and vacuum state solutions of the zero-pressure flow, respectively. Secondly, we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure. Further we rigorously prove that, as the two-parameter flux perturbation vanishes, any Riemann solution containing two shock waves tends to a delta shock solution to the zero-pressure flow; any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Comment: 17 pages, 4 figures, accepted for publication in SCIENCE CHINA Mathematic
    corecore