9,909 research outputs found

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; Jódar Sánchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Green’s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Green’s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Green’s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & Jódar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    A nonlinear parabolic problem with singular terms and nonregular data

    Get PDF
    We study existence of nonnegative solutions to a nonlinear parabolic boundary value problem with a general singular lower order term and a nonnegative measure as nonhomogeneous datum, of the form \begin{cases} \dys u_t - \Delta_p u = h(u)f+\mu & \text{in}\ \Omega \times (0,T),\\ u=0 &\text{on}\ \partial\Omega \times (0,T),\\ u=u_0 &\text{in}\ \Omega \times \{0\}, \end{cases} where Ω\Omega is an open bounded subset of RN\mathbb{R}^N (N2N\ge2), u0u_0 is a nonnegative integrable function, Δp\Delta_p is the pp-Laplace operator, μ\mu is a nonnegative bounded Radon measure on Ω×(0,T)\Omega \times (0,T) and ff is a nonnegative function of L1(Ω×(0,T))L^1(\Omega \times (0,T)). The term hh is a positive continuous function possibly blowing up at the origin. Furthermore, we show uniqueness of finite energy solutions in presence of a nonincreasing hh

    Nonlinear Diffusion and Image Contour Enhancement

    Full text link
    The theory of degenerate parabolic equations of the forms ut=(Φ(ux))xandvt=(Φ(v))xx u_t=(\Phi(u_x))_{x} \quad {\rm and} \quad v_{t}=(\Phi(v))_{xx} is used to analyze the process of contour enhancement in image processing, based on the evolution model of Sethian and Malladi. The problem is studied in the framework of nonlinear diffusion equations. It turns out that the standard initial-value problem solved in this theory does not fit the present application since it it does not produce image concentration. Due to the degenerate character of the diffusivity at high gradient values, a new free boundary problem with singular boundary data can be introduced, and it can be solved by means of a non-trivial problem transformation. The asymptotic convergence to a sharp contour is established and rates calculated.Comment: 29 pages, includes 6 figure

    Hilbert transforms and the Cauchy integral in euclidean space

    Full text link
    We generalize the notion of harmonic conjugate functions and Hilbert transforms to higher dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These conjugate functions are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class of generalized double layer potential operators on Lipschitz surfaces and boundedness of related Hilbert transforms.Comment: Some minor corrections mad

    Asymptotic behavior and existence of solutions for singular elliptic equations

    Get PDF
    We study the asymptotic behavior, as γ\gamma tends to infinity, of solutions for the homogeneous Dirichlet problem associated to singular semilinear elliptic equations whose model is Δu=f(x)uγ in Ω, -\Delta u=\frac{f(x)}{u^\gamma}\,\text{ in }\Omega, where Ω\Omega is an open, bounded subset of \RN and ff is a bounded function. We deal with the existence of a limit equation under two different assumptions on ff: either strictly positive on every compactly contained subset of Ω\Omega or only nonnegative. Through this study we deduce optimal existence results of positive solutions for the homogeneous Dirichlet problem associated to Δv+v2v=f in Ω. -\Delta v + \frac{|\nabla v|^2}{v} = f\,\text{ in }\Omega. Comment: 31 page

    On periodic solutions of nonlinear wave equations, including Einstein equations with a negative cosmological constant

    Full text link
    We construct periodic solutions of nonlinear wave equations using analytic continuation. The construction applies in particular to Einstein equations, leading to infinite-dimensional families of time-periodic solutions of the vacuum, or of the Einstein-Maxwell-dilaton-scalar fields-Yang-Mills-Higgs-Chern-Simons-f(R)f(R) equations, with a negative cosmological constant.Comment: 15 pages, 1 figur
    corecore