31,334 research outputs found

    Quantifying Link Stability in Ad Hoc Wireless Networks Subject to Ornstein-Uhlenbeck Mobility

    Full text link
    The performance of mobile ad hoc networks in general and that of the routing algorithm, in particular, can be heavily affected by the intrinsic dynamic nature of the underlying topology. In this paper, we build a new analytical/numerical framework that characterizes nodes' mobility and the evolution of links between them. This formulation is based on a stationary Markov chain representation of link connectivity. The existence of a link between two nodes depends on their distance, which is governed by the mobility model. In our analysis, nodes move randomly according to an Ornstein-Uhlenbeck process using one tuning parameter to obtain different levels of randomness in the mobility pattern. Finally, we propose an entropy-rate-based metric that quantifies link uncertainty and evaluates its stability. Numerical results show that the proposed approach can accurately reflect the random mobility in the network and fully captures the link dynamics. It may thus be considered a valuable performance metric for the evaluation of the link stability and connectivity in these networks.Comment: 6 pages, 4 figures, Submitted to IEEE International Conference on Communications 201

    Simple observations concerning black holes and probability

    Full text link
    It is argued that black holes and the limit distributions of probability theory share several properties when their entropy and information content are compared. In particular the no-hair theorem, the entropy maximization and holographic bound, and the quantization of entropy of black holes have their respective analogues for stable limit distributions. This observation suggests that the central limit theorem can play a fundamental role in black hole statistical mechanics and in a possibly emergent nature of gravity.Comment: 6 pages Latex, final version. Essay awarded "Honorable Mention" in the Gravity Research Foundation 2009 Essay Competitio

    Beyond the Shannon-Khinchin Formulation: The Composability Axiom and the Universal Group Entropy

    Get PDF
    The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann-Gibbs (BG) entropy and are widely applicable in thermodynamics, quantum mechanics and information theory. In [23], by extending previous ideas of Shannon [38], [39], Khinchin proposed an axiomatic definition of the BG entropy, based on four requirements, nowadays known as the Shannon-Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behind the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent subsystems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal class of admissible entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with the universal formal group, the new family of entropies introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.Comment: Extended version; 25 page

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic
    • 

    corecore