37,556 research outputs found

    Existence and solution methods for equilibria

    Get PDF
    Equilibrium problems provide a mathematical framework which includes optimization, variational inequalities, fixed-point and saddle point problems, and noncooperative games as particular cases. This general format received an increasing interest in the last decade mainly because many theoretical and algorithmic results developed for one of these models can be often extended to the others through the unifying language provided by this common format. This survey paper aims at covering the main results concerning the existence of equilibria and the solution methods for finding them

    ON BERGE EQUILIBRIUM

    Get PDF
    Based on the notion of equilibrium of a coalition P relatively to a coalition K, of Berge, Zhukovskii has introduced Berge equilibrium as an alternative solution to Nash equilibrium for non cooperative games in normal form. The essential advantage of this equilibrium is that it does not require negotiation of any player with the remaining players, which is not the case when a game has more than one Nashequilibrium. The problem of existence of Berge equilibrium is more difficult (compared to that of Nash). This paper is a contribution to the problem of existence and computation of Berge equilibrium of a non cooperative game. Indeed, using the g-maximum equality, we establish the existence of a Berge equilibrium of a non-cooperative game in normal form. In addition, we give sufficient conditions for theexistence of a Berge equilibrium which is also a Nash equilibrium. This allows us to get equilibria enjoying the properties of both concepts of solution. Finally, using these results, we provide two methods for the computation of Berge equilibria: the first one computes Berge equilibria; the second one computes Berge equilibria which are also Nash equilibria

    Numerical equilibrium analysis for structured consumer resource models

    Get PDF
    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for “Daphnia consuming algae” models in C-code. The results obtained by way of this implementation are shown in the form of graphs

    Using EPECs to model bilevel games in restructured electricity markets with locational prices

    Get PDF
    CWPE0619 (EPRG0602) Xinmin Hu and Daniel Ralph (Feb 2006) Using EPECs to model bilevel games in restructured electricity markets with locational prices We study a bilevel noncooperative game-theoretic model of electricity markets with locational marginal prices. Each player faces a bilevel optimization problem that we remodel as a mathematical program with equilibrium constraints, MPEC. This gives an EPEC, equilibrium problem with equilibrium constraints. We establish sufficient conditions for existence of pure strategy Nash equilibria for this class of bilevel games and give some applications. We show by examples the effect of network transmission limits, i.e. congestion, on existence of equilibria. Then we study, for more general EPECs, the weaker pure strategy concepts of local Nash and Nash stationary equilibria. We model the latter via complementarity problems, CPs. Finally, we present numerical examples of methods that attempt to find local Nash or Nash stationary equilibria of randomly generated electricity market games. The CP solver PATH is found to be rather effective in this context

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana
    • …
    corecore