84 research outputs found

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Existence of almost periodic solution for SICNN with a neutral delay

    Get PDF
    In this paper, a kind of shunting inhibitory cellular neural network with a neutral delay was considered. By using the Banach fixed point theorem, we established a result about the existence and uniqueness of the almost periodic solution for the shunting inhibitory cellular neural network

    Existence of global attractor for a nonautonomous state-dependent delay differential equation of neuronal type

    Get PDF
    The analysis of the long-term behavior of the mathematical model of a neural network constitutes a suitable framework to develop new tools for the dynamical description of nonautonomous state-dependent delay equations (SDDEs). The concept of global attractor is given, and some results which establish properties ensuring its existence and providing a description of its shape, are proved. Conditions for the exponential stability of the global attractor are also studied. Some properties of comparison of solutions constitute a key in the proof of the main results, introducing methods of monotonicity in the dynamical analysis of nonautonomous SDDEs. Numerical simulations of some illustrative models show the applicability of the theory.Ministerio de EconomĂ­a y Competitividad / FEDER, MTM2015-66330-PMinisterio de Ciencia, InnovaciĂłn y Universidades, RTI2018-096523-B-I00European Commission, H2020-MSCA-ITN-201

    Synchrony and bifurcations in coupled dynamical systems and effects of time delay

    Get PDF
    Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hängt von der Fähigkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale Stabilität der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den Stabilitätseigenschaften synchroner Zustände zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. Zunächst präsentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezüglich ihrer Bedeutung für die Stabilität des synchronen Zustands. Folgend untersuche ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Netzwerk eine schwach gewichtete Kante hinzugefügt wird. Daraufhin untersuche ich synchrone Zustände in Ringen von Phasenoszillatoren die mit Zeitverzögerung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und analysiere deren Stabilität und Verzweigungen. Weiter zeige ich, dass eine Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin für beliebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten des Flusses sowie ihre Stabilität unter der Zeitverschiebung erhalten bleiben. Darüber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die gebraucht werden, um das System äquivalent zu beschreiben. Schließlich untersuche ich das auffällige Phänomen eines nichtstetigen Übergangs zu Synchronizität in Klassen großer Zufallsnetzwerke indem ich einen kürzlich eingeführten Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter Kopplungen verallgemeinere.Since a couple of decades, dynamics on networks is a rapidly growing branch of mathematics with applications in various disciplines such as physics, biology or sociology. The functioning of many networks heavily relies on the ability to synchronize the network’s nodes. More precisely, the existence and the transverse stability of the synchronous manifold are essential properties. It was only in the last few years that people tried to understand the entangled relation between the coupling structure of a network, given by a (di-)graph, and the stability properties of synchronous states. This is the central theme of this dissertation. I first present results towards a classification of the links in a directed, diffusive network according to their impact on the stability of synchronization. Then I investigate a complex bifurcation scenario observed in a directed ring of Stuart-Landau oscillators. I show that under the addition of a single weak link, this scenario is persistent. Subsequently, I investigate synchronous patterns in a directed ring of phase oscillators coupled with time delay. I discuss the coexistence of multiple of synchronous solutions and investigate their stability and bifurcations. I apply these results by showing that a certain time-shift transformation can be used in order to employ the ring as a pattern recognition device. Next, I investigate the same time-shift transformation for arbitrary coupling structures in a very general setting. I show that invariant manifolds of the flow together with their stability properties are conserved under the time-shift transformation. Furthermore, I determine the minimal number of delays needed to equivalently describe the system’s dynamics. Finally, I investigate a peculiar phenomenon of non-continuous transition to synchrony observed in certain classes of large random networks, generalizing a recently introduced approach for the description of large random networks to the case of delayed couplings

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Synchronous behavior in networks of coupled systems : with applications to neuronal dynamics

    Get PDF
    Synchronization in networks of interacting dynamical systems is an interesting phenomenon that arises in nature, science and engineering. Examples include the simultaneous flashing of thousands of fireflies, the synchronous firing of action potentials by groups of neurons, cooperative behavior of robots and synchronization of chaotic systems with applications to secure communication. How is it possible that systems in a network synchronize? A key ingredient is that the systems in the network "communicate" information about their state to the systems they are connected to. This exchange of information ultimately results in synchronization of the systems in the network. The question is how the systems in the network should be connected and respond to the received information to achieve synchronization. In other words, which network structures and what kind of coupling functions lead to synchronization of the systems? In addition, since the exchange of information is likely to take some time, can systems in networks show synchronous behavior in presence of time-delays? The first part of this thesis focusses on synchronization of identical systems that interact via diffusive coupling, that is a coupling defined through the weighted difference of the output signals of the systems. The coupling might contain timedelays. In particular, two types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling in which only the transmitted signals contain a time-delay, and coupling type II is diffusive coupling in which every signal is timedelayed. It is proven that networks of diffusive time-delay coupled systems that satisfy a strict semipassivity property have solutions that are ultimately bounded. This means that the solutions of the interconnected systems always enter some compact set in finite time and remain in that set ever after. Moreover, it is proven that nonlinear minimum-phase strictly semipassive systems that interact via diffusive coupling always synchronize provided the interaction is sufficiently strong. If the coupling functions contain time-delays, then these systems synchronize if, in addition to the sufficiently strong interaction, the product of the time-delay and the coupling strength is sufficiently small. Next, the specific role of the topology of the network in relation to synchronization is discussed. First, using symmetries in the network, linear invariant manifolds for networks of the diffusively time-delayed coupled systems are identified. If such a linear invariant manifold is also attracting, then the network possibly shows partial synchronization. Partial synchronization is the phenomenon that some, at least two, systems in the network synchronize with each other but not with every system in the network. It is proven that a linear invariant manifold defined by a symmetry in a network of strictly semipassive systems is attracting if the coupling strength is sufficiently large and the product of the coupling strength and the time-delay is sufficiently small. The network shows partial synchronization if the values of the coupling strength and time-delay for which this manifold is attracting differ from those for which all systems in the network synchronize. Next, for systems that interact via symmetric coupling type II, it is shown that the values of the coupling strength and time-delay for which any network synchronizes can be determined from the structure of that network and the values of the coupling strength and time-delay for which two systems synchronize. In the second part of the thesis the theory presented in the first part is used to explain synchronization in networks of neurons that interact via electrical synapses. In particular, it is proven that four important models for neuronal activity, namely the Hodgkin-Huxley model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo model, all have the semipassivity property. Since electrical synapses can be modeled by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, synchronization in networks of these neurons happens if the interaction is sufficiently strong and the product of the time-delay and the coupling strength is sufficiently small. Numerical simulations with various networks of Hindmarsh-Rose neurons support this result. In addition to the results of numerical simulations, synchronization and partial synchronization is witnessed in an experimental setup with type II coupled electronic realizations of Hindmarsh-Rose neurons. These experimental results can be fully explained by the theoretical findings that are presented in the first part of the thesis. The thesis continues with a study of a network of pancreatic -cells. There is evidence that these beta-cells are diffusively coupled and that the synchronous bursting activity of the network is related to the secretion of insulin. However, if the network consists of active (oscillatory) beta-cells and inactive (dead) beta-cells, it might happen that, due to the interaction between the active and inactive cells, the activity of the network dies out which results in a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1. Whether the activity dies out or not depends on the number of cells that are active relative to the number of inactive cells. A bifurcation analysis gives estimates of the number of active cells relative to the number of inactive cells for which the network remains active. At last the controlled synchronization problem for all-to-all coupled strictly semipassive systems is considered. In particular, a systematic design procedure is presented which gives (nonlinear) coupling functions that guarantee synchronization of the systems. The coupling functions have the form of a definite integral of a scalar weight function on a interval defined by the outputs of the systems. The advantage of these coupling functions over linear diffusive coupling is that they provide high gain only when necessary, i.e. at those parts of the state space of the network where nonlinearities need to be suppressed. Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical results
    • …
    corecore