103 research outputs found

    Cone-like Invariant Manifolds for Nonsmooth Systems

    Get PDF
    This thesis deals with rigorous mathematical techniques for higher-dimensional nonsmooth systems and their applications. The dynamical behaviour of these systems is a nonlocal problem due to the lack of smoothness. Motivated by various examples of nonsmooth systems in applications, we propose to explore the concept of invariant surfaces in the phase space which is separated by a discontinuity hypersurface. For such systems the corresponding Poincaré map can be determined; it turns out that under suitable conditions an invariant cone occurs which is characterized by a fixed point of the Poincaré map. The invariant cone seems to serve in a similar way as a generalisation of the classical center manifold for smooth differential systems. Hence, the stability of the whole system can be reduced to investigate the stability on the two-dimensional surface of the cone. Motivated to study the generation of invariant cones out of smooth systems, a numerical procedure to establish invariant cones and their stability is presented. It has been found that the flat degenerate cone in a smooth system develops under nonsmooth perturbations into a cone-like configuration. Also a simple example is used to explain a paradoxical situation concerning stability. Theoretical results concerning the existence of invariant cones and possible mechanisms responsible for the observed behavior for general three dimensional nonsmooth systems are discussed. These investigations reveal that the system possesses a rich dynamic behavior and new phenomena such as, for instance, the existence of multiple invariant cones for such system. Our approach is developed to include the case when sliding motion takes place on the manifold. Sliding dynamical equations are formulated by using Filippov's method. Existence of invariant cones containing a segment of sliding orbits are given as well as stability on these cones. Different sliding bifurcation scenarios are treated by theoretical analysis and simulation. As an application we have investigated the dynamics of an automotive brake system model under the excitation of dry friction force which has served as a motivating example to develop our concepts. This model belongs to the class of nonsmooth systems of Filippov type which is investigated from direct crossing and a sliding motion point of view. Existence of invariant cones and different types of bifurcation phenomena such as sliding periodic doubling and multiple periodic orbits are observed. Finally, extensions to nonlinear perturbations of nonsmooth linear systems have been obtained by using the nonsmooth linear system as basic system. If the basic system possesses an attractive invariant cone without sliding motion, we have shown that locally the Poincaré map contains the necessary information with regard to attractivity of the invariant cone. The existence of a generalized center manifold reduction of nonlinear system has been proven by using Hadamard graph transformation approach. A class of nonlinear systems having a cone-like invariant "manifold" is presented to illustrate the center manifold reduction and associated bifurcation. The scientific contributions of parts of this thesis are presented in [32,39,66]

    Effective high-temperature estimates for intermittent maps

    Full text link
    Using quantitative perturbation theory for linear operators, we prove spectral gap for transfer operators of various families of intermittent maps with almost constant potentials ("high-temperature" regime). H\"older and bounded p-variation potentials are treated, in each case under a suitable assumption on the map, but the method should apply more generally. It is notably proved that for any Pommeau-Manneville map, any potential with Lispchitz constant less than 0.0014 has a transfer operator acting on Lip([0, 1]) with a spectral gap; and that for any 2-to-1 unimodal map, any potential with total variation less than 0.0069 has a transfer operator acting on BV([0, 1]) with a spectral gap. We also prove under quite general hypotheses that the classical definition of spectral gap coincides with the formally stronger one used in (Giulietti et al. 2015), allowing all results there to be applied under the high temperature bounds proved here: analyticity of pressure and equilibrium states, central limit theorem, etc.Comment: v2: minor corrections and clarifications. To appear in ETDS; Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 201

    Rank Reduction with Convex Constraints

    Get PDF
    This thesis addresses problems which require low-rank solutions under convex constraints. In particular, the focus lies on model reduction of positive systems, as well as finite dimensional optimization problems that are convex, apart from a low-rank constraint. Traditional model reduction techniques try to minimize the error between the original and the reduced system. Typically, the resulting reduced models, however, no longer fulfill physically meaningful constraints. This thesis considers the problem of model reduction with internal and external positivity constraints. Both problems are solved by means of balanced truncation. While internal positivity is shown to be preserved by a symmetry property; external positivity preservation is accomplished by deriving a modified balancing approach based on ellipsoidal cone invariance.In essence, positivity preserving model reduction attempts to find an infinite dimensional low-rank approximation that preserves nonnegativity, as well as Hankel structure. Due to the non-convexity of the low-rank constraint, this problem is even challenging in a finite dimensional setting. In addition to model reduction, the present work also considers such finite dimensional low-rank optimization problems with convex constraints. These problems frequently appear in applications such as image compression, multivariate linear regression, matrix completion and many more. The main idea of this thesis is to derive the largest convex minorizers of rank-constrained unitarily invariant norms. These minorizers can be used to construct optimal convex relaxations for the original non-convex problem. Unlike other methods such as nuclear norm regularization, this approach benefits from having verifiable a posterior conditions for which a solution to the convex relaxation and the corresponding non-convex problem coincide. It is shown that this applies to various numerical examples of well-known low-rank optimization problems. In particular, the proposed convex relaxation performs significantly better than nuclear norm regularization. Moreover, it can be observed that a careful choice among the proposed convex relaxations may have a tremendous positive impact on matrix completion. Computational tractability of the proposed approach is accomplished in two ways. First, the considered relaxations are shown to be representable by semi-definite programs. Second, it is shown how to compute the proximal mappings, for both, the convex relaxations, as well as the non-convex problem. This makes it possible to apply first order method such as so-called Douglas-Rachford splitting. In addition to the convex case, where global convergence of this algorithm is guaranteed, conditions for local convergence in the non-convex setting are presented. Finally, it is shown that the findings of this thesis also extend to the general class of so-called atomic norms that allow us to cover other non-convex constraints

    Linear complementarity systems : a study in hybrid dynamics

    Get PDF

    Notes in Pure Mathematics & Mathematical Structures in Physics

    Full text link
    These Notes deal with various areas of mathematics, and seek reciprocal combinations, explore mutual relations, ranging from abstract objects to problems in physics.Comment: Small improvements and addition

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor
    • …
    corecore