128 research outputs found

    Аналіз генетичних алгоритмів розв’язання задачі двовимірної ортогональної упаковки прямокутних об’єктів у напівнескінченну смугу

    No full text
    Досліджено клас генетичних алгоритмів вирішення задачі двовимірної ортогональної упаковки прямокутних об’єктів у напівнескінченну смугу фіксованої ширини. Наведено результати теоретичного аналізу складності реалізації декодерів MERA та BLF; запропоновані власні реалізації цих декодерів з низкою евристичних оптимізацій. Запропоновано реалізацію генетичного алгоритму розв’язання задачі упаковки для окремих випадків (із забороною поворотів об’єктів та з поворотами на 90 °). Описано результати тестових випробувань розробленого алгоритму за різних конфігурацій основних параметрів з використанням загальновідомих тестових наборів. Наведено результати порівняння отриманого алгоритму з іншими відомими алгоритмами.Исследован класс генетических алгоритмов решения задачи двухмерной ортогональной упаковки прямоугольных объектов в полубесконечную полосу фиксированной ширины. Приведены результаты теоретического анализа сложности реализации декодеров MERA и BLF; предложены собственные реализации этих декодеров с рядом эвристических оптимизаций. Предложена реализация генетического алгоритма решения задачи упаковки для отдельных случаев (с запретом поворотов объектов и с поворотами на 90°). Описаны результаты тестирования разработанного алгоритма при разных конфигурациях основных параметров с использованием общеизвестных тестовых наборов. Приведены результаты сравнения полученного алгоритма с другими известными алгоритмами.A class of genetic algorithms for solving the 2D Strip Packing Problem is investigated. The theoretical analysis of the complexity of implementing decoders MERA and BLF is done. Original implementations of these MERA and BLF decoders enhanced with a number of heuristic optimizations are proposed. Genetic algorithm for solving the 2D Strip Packing Problem for special cases (allowed/forbidden objects rotation by 90°) with the use of MERA/BLF decoders is proposed. Extensive computational experiments with well-known instances are performed to analyze different configurations of basic parameters of proposed genetic algorithm. The comparison of the obtained algorithm with other known algorithms is given

    Image-based Modeling of Flow through Porous Media: Development of Multiscale Techniques for the Pore Level

    Get PDF
    Increasingly, imaging technology allows porous media problems to be modeled at microscopic and sub-microscopic levels with finer resolution. However, the physical domain size required to be representative of the media prohibits comprehensive micro-scale simulation. A hybrid or multiscale approach is necessary to overcome this challenge. In this work, a technique was developed for determining the characteristic scales of porous materials, and a multiscale modeling methodology was developed to better understand the interaction/dependence of phenomena occurring at different microscopic scales. The multiscale method couples microscopic simulations at the pore and sub-pore scales. Network modeling is a common pore-scale technique which employs severe assumptions, making it more computationally efficient than direct numerical simulation, enabling simulation over larger length scales. However, microscopic features of the medium are lost in the discretization of a material into a network of interconnected pores and throats. In contrast, detailed microstructure and flow patterns can be captured by modern meshing and direct numerical simulation techniques, but these models are computationally expensive. In this study, a data-driven multiscale technique has been developed that couples the two types of models, taking advantage of the benefits of each. Specifically, an image-based physically-representative pore network model is coupled to an FEM (finite element method) solver that operates on unstructured meshes capable of resolving details orders of magnitude smaller than the pore size. In addition to allowing simulation at multiple scales, the current implementation couples the models using a machine learning approach, where results from the FEM model are used to learn network model parameters. Examples of the model operating on real materials are given that demonstrate improvements in network modeling enabled by the multiscale framework. The framework enables more advanced multiscale and multiphysics modeling – an application to particle straining problems is shown. More realistic network filtration simulations are possible by incorporating information from the sub-pore-scale. New insights into the size exclusion mechanism of particulate filtration were gained in the process of generating data for machine learning of conductivity reduction due to particle trapping. Additional tests are required to validate the multiscale network filtration model, and compare with experimental findings in literature
    corecore