270,602 research outputs found

    0-1 Integer Linear Programming with a Linear Number of Constraints

    Full text link
    We give an exact algorithm for the 0-1 Integer Linear Programming problem with a linear number of constraints that improves over exhaustive search by an exponential factor. Specifically, our algorithm runs in time 2(1−poly(1/c))n2^{(1-\text{poly}(1/c))n} where n is the number of variables and cn is the number of constraints. The key idea for the algorithm is a reduction to the Vector Domination problem and a new algorithm for that subproblem

    Quantum Circuit Implementation and Resource Analysis of LBlock and LiCi

    Full text link
    Due to Grover's algorithm, any exhaustive search attack of block ciphers can achieve a quadratic speed-up. To implement Grover,s exhaustive search and accurately estimate the required resources, one needs to implement the target ciphers as quantum circuits. Recently, there has been increasing interest in quantum circuits implementing lightweight ciphers. In this paper we present the quantum implementations and resource estimates of the lightweight ciphers LBlock and LiCi. We optimize the quantum circuit implementations in the number of gates, required qubits and the circuit depth, and simulate the quantum circuits on ProjectQ. Furthermore, based on the quantum implementations, we analyze the resources required for exhaustive key search attacks of LBlock and LiCi with Grover's algorithm. Finally, we compare the resources for implementing LBlock and LiCi with those of other lightweight ciphers.Comment: 29 pages,21 figure

    Applying Grover's algorithm to AES: quantum resource estimates

    Full text link
    We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.Comment: 13 pages, 3 figures, 5 tables; to appear in: Proceedings of the 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016

    Anytime Subgroup Discovery in Numerical Domains with Guarantees

    Get PDF
    International audienceSubgroup discovery is the task of discovering patterns that accurately discriminate a class label from the others. Existing approaches can uncover such patterns either through an exhaustive or an approximate exploration of the pattern search space. However, an exhaustive exploration is generally unfeasible whereas approximate approaches do not provide guarantees bounding the error of the best pattern quality nor the exploration progression ("How far are we of an exhaustive search"). We design here an algorithm for mining numerical data with three key properties w.r.t. the state of the art: (i) It yields progressively interval patterns whose quality improves over time; (ii) It can be interrupted anytime and always gives a guarantee bounding the error on the top pattern quality and (iii) It always bounds a distance to the exhaustive exploration. After reporting experimentations showing the effectiveness of our method, we discuss its generalization to other kinds of patterns

    Anytime Coalition Structure Generation with Worst Case Guarantees

    Full text link
    Coalition formation is a key topic in multiagent systems. One would prefer a coalition structure that maximizes the sum of the values of the coalitions, but often the number of coalition structures is too large to allow exhaustive search for the optimal one. But then, can the coalition structure found via a partial search be guaranteed to be within a bound from optimum? We show that none of the previous coalition structure generation algorithms can establish any bound because they search fewer nodes than a threshold that we show necessary for establishing a bound. We present an algorithm that establishes a tight bound within this minimal amount of search, and show that any other algorithm would have to search strictly more. The fraction of nodes needed to be searched approaches zero as the number of agents grows. If additional time remains, our anytime algorithm searches further, and establishes a progressively lower tight bound. Surprisingly, just searching one more node drops the bound in half. As desired, our algorithm lowers the bound rapidly early on, and exhibits diminishing returns to computation. It also drastically outperforms its obvious contenders. Finally, we show how to distribute the desired search across self-interested manipulative agents
    • …
    corecore