5,712 research outputs found

    Lifelogging system based on Averaged Hidden Markov Models: dangerous activities recognition for caregivers support

    Get PDF
    In this paper a prototype lifelogging system for monitoring persons with cognitive disabilities and elderly people, as well as a method for automatic detection of dangerous activities are presented. The system allows remote monitoring of observed persons via Internet website and respects the privacy of the persons by displaying their silhouettes instead of actual images. Application allows viewing of both real-time and historic data. Lifelogging data (skeleton coordinates) needed for posture and activity recognition are acquired using Microsoft Kinect 2.0. Several activities are marked as potentially dangerous and generate alarms sent to the caregivers upon detection. Recognition models are developed using Averaged Hidden Markov Models with multiple learning sequences. Action recognition includes methods for differentiation between normal and potentially dangerous activities e.g. self-aggressive autistic behavior) using the same motion trajectory. Some activity recognition examples and results are presented

    Modeling Individual Cyclic Variation in Human Behavior

    Full text link
    Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present CyHMMs, a cyclic hidden Markov model method for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to model variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets -- of menstrual cycle symptoms and physical activity tracking data -- yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.Comment: Accepted at WWW 201

    Dreaming of atmospheres

    Get PDF
    Here we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrievals of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Reconstructions of the learned features, also referred to as `dreams' of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.Comment: ApJ accepte

    A generalized risk approach to path inference based on hidden Markov models

    Full text link
    Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-examines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD), have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed (Brushe et al., 1998). The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work "out of the box" in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in conclusion.Comment: Section 5: corrected denominators of the scaled beta variables (pp. 27-30), => corrections in claims 1, 3, Prop. 12, bottom of Table 1. Decoder (49), Corol. 14 are generalized to handle 0 probabilities. Notation is more closely aligned with (Bishop, 2006). Details are inserted in eqn-s (43); the positivity assumption in Prop. 11 is explicit. Fixed typing errors in equation (41), Example
    • …
    corecore