23,226 research outputs found

    The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

    Get PDF
    We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential" observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants' understanding when using explanations produced by BCM, compared to those given by prior art.Comment: Published in Neural Information Processing Systems (NIPS) 2014, Neural Information Processing Systems (NIPS) 201

    An introduction to time-resolved decoding analysis for M/EEG

    Full text link
    The human brain is constantly processing and integrating information in order to make decisions and interact with the world, for tasks from recognizing a familiar face to playing a game of tennis. These complex cognitive processes require communication between large populations of neurons. The non-invasive neuroimaging methods of electroencephalography (EEG) and magnetoencephalography (MEG) provide population measures of neural activity with millisecond precision that allow us to study the temporal dynamics of cognitive processes. However, multi-sensor M/EEG data is inherently high dimensional, making it difficult to parse important signal from noise. Multivariate pattern analysis (MVPA) or "decoding" methods offer vast potential for understanding high-dimensional M/EEG neural data. MVPA can be used to distinguish between different conditions and map the time courses of various neural processes, from basic sensory processing to high-level cognitive processes. In this chapter, we discuss the practical aspects of performing decoding analyses on M/EEG data as well as the limitations of the method, and then we discuss some applications for understanding representational dynamics in the human brain
    • …
    corecore