9,018 research outputs found

    Multi-Fidelity Modeling of Dynamic Systems for Operation-Parallel Simulation

    Get PDF

    Civil Space Technology Initiative: a First Step

    Get PDF
    This is the first published overview of OAST's focused program, the Civil Space Technology Initiative, (CSTI) which started in FY88. This publication describes the goals, technical approach, current status, and plans for CSTI. Periodic updates are planned

    Soft Sensor-based Servo Press Monitoring

    Get PDF
    The force that a servo press exerts forming a workpiece is one the most important magnitudes in any metal forming operation. The process force, along with the characteristics of the die, is what shapes the workpiece. When the process force is greater than the maximum force for which the servo press was designed, the servo press integrity can be damaged. Therefore, the knowledge of the process force is of great interest for both, press manufacturers and users. As such, the metal forming sector is seeking systems that can monitor the process force and the operation of the servo press to analyse process’s performance and predict future deviations in the forming operation. Servo press users want to guarantee the quality of the formed parts and reduce facility downtimes due to malfunctions of the press. This dissertation addressed the monitoring of the process force and the dynamic performance of a servo press based on a model based statistical signal processing algorithm known as the dual particle filter (dPF). Initially both, the developed model of a servo press and the proposed dPF, have been experimentally evaluated and validated in a reduced scale test bench. The test bench has been designed and manufactured based on a design methodology that allows to replicate the kinematic and dynamic behaviour of different servo press facilities in the same test bench. The experimental validation has been also carried out in an industrial servo press under three different metal forming processes. The estimation results have proved the ability of the dPF to track the process force throughout the evaluated processes, obtaining a deviation lower than 5% with respect to the measured force signals at the maximum force position. The dPF algorithm has been accelerated by means of a field programmable gate array (FPGA) to achieve a real time estimation.Serbo prentsa batek pieza gordin bat eraldatzeko egindako prozesuko indarra edozein konformatu eragiketako magnitude garrantzitsuenetarikoa da. Prozesuko indarra da, trokelaren ezaugarriekin batera, pieza gordina eraldatzen duena. Prozesuko indarra prentsak diseinuaren arabera jasan dezakeena baino handiagoa bada, prentsak kalteak izan ditzake bere osotasunean. Beraz, prozesuko indarraren ezagutza interes handikoa da, prentsa egileentzat zein erabiltzaileentzat. Hori dela eta, metal eraldatzearen sektoreak prozesuko indarra eta prentsa beraren funtzionamendua monitoriza ditzaketen sistemen bila diardute, prentsaren jarduera aztertu eta eraldatzeko operazioetan etorkizunean izan daitezkeen desbideraketak aurreikusteko. Prentsa erabiltzaileek fabrikatutako piezen kalitatea bermatzea eta funtzionamendu akatsengatiko prentsaren geldialdiak murriztea bilatzen dute. Tesi honek servo prentsa baten prozesuko indarra eta portarea dinamikoaren monitorizazioa jorratzen ditu, dual particle filter (dPF) izeneko modeloetan oinarritutako seinalaren prozesamendu estadistikoko algoritmo baten bitartez. Lehenik eta behin, garatutako servo prentsaren modeloa eta proposatutako dPFa eskalatutako entsegutarako banku batean ebaluatu eta balioztatu dira. Eskalatutako entsegutarako bankua serbo prentsa desberdinen portaera zinematiko eta dinamikoa erreplikatzea ahalbidetzen duen metodologia baten bitartez diseinatu eta gauzatu da. Esperimentu bidezko balioztatzea serbo prentsa industrial batean ere gauzatu da hiru konformatuko prozesu desberdinetan. Estimazio emaitzek dPFak prozesuko indarrari jarraitzeko duen ahalmena forgatu dute, neurtutako indarrarekiko %5ekoa baino txikiagoko desbideraketa lortuz indar maximoa egiten den puntuan. dPF algoritmoa field programmable gate array (FPGA) baten bitartez azeleratu da, denbora errealeko estimazioa lortzeko.La fuerza que una servo prensa ejerce conformando una pieza es la magnitud más importante en cualquier operación de conformado. La fuerza aplicada, junto a las características del troquel, es la magnitud que da forma a la pieza. Cuando la fuerza de proceso es más grande que la fuerza máxima para la que fue diseñada la servo prensa, la integridad de ésta puede verse afectada. Por lo tanto, el conocimiento de la fuerza de proceso es de gr´an interés tanto para los fabricantes de prensas como para los usuarios de las mismas. Así pues, el sector del conformado está buscando sistemas capaces de monitorizar la fuerza de proceso y el funcionamiento de la servo prensa para analizar el proceso y predecir futuras desviaciones de las operaciones de conformado. Los usuarios de las servo prensas quieren garantizar la calidad de las piezas fabricadas y reducir las paradas de las servo prensas debidas al mal funcionamiento de las mismas. Esta tesis aborda la monitorización de la fuerza de proceso y el comportamiento dinámico de una servo prensa mediante un algoritmo de tratamiento estadístico de la señal conocido como el dual Particle Filter (dPF). Inicialmente, tanto el modelo desarrollado como el dPF propuesto han sido evaluados y validados experimentalmente en un banco de ensayos de escala reducida. El banco de ensayos ha sido diseñado y fabricado mediante una metodología de diseño que permite replicar el comportamiento cinem´atico y din´amico de distintas servo prensas en el mismo banco. La validación experimental también se ha llevado a cabo en una servo prensa industrial mediante tres procesos de conformado distintos. Los resultados de estimación han provado la habilidad del dPF para seguir la fuerza de proceso en los procesos evaluados, obteniendo una desviación menor que un 5% con respecto a las señales medidas en el punto donde se da la fuerza máxima. El algoritmo dPF ha sido acelerado mediante un filed programmable gate array (FPGA) para lograr estimaciones en tiempo real

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Optimal operation of combined heat and power systems: an optimization-based control strategy

    Get PDF
    The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research factory in Darmstadt, Germany.Peer ReviewedPostprint (author's final draft

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature
    • …
    corecore