199 research outputs found

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    t-DeLP: An argumentation-based Temporal Defeasible Logic Programming framework

    Get PDF
    The aim of this paper is to propose an argumentation-based defeasible logic, called t-DeLP, that focuses on forward temporal reasoning for causal inference. We extend the language of the DeLP logical framework by associating temporal parameters to literals. A temporal logic program is a set of basic temporal facts and (strict or defeasible) durative rules. Facts and rules combine into durative arguments representing temporal processes. As usual, a dialectical procedure determines which arguments are undefeated, and hence which literals are warranted, or defeasibly follow from the program. t-DeLP, though, slightly differs from DeLP in order to accommodate temporal aspects, like the persistence of facts. The output of a t-DeLP program is a set of warranted literals, which is first shown to be non-contradictory and be closed under sub-arguments. This basic framework is then modified to deal with programs whose strict rules encode mutex constraints. The resulting framework is shown to satisfy stronger logical properties like indirect consistency and closure. © 2013 Springer Science+Business Media Dordrecht.This work has been partially supported by the Spanish MICINN projects CONSOLIDER-INGENIO 2010 Agreement Technologies CSD2007-00022 and ARINF TIN2009-14704-C03-03, with FEDER funds of the EU, and by the Generalitat de Catalunya grant 2009-SGR-1434Peer Reviewe
    corecore